Surjective factorization of holomorphic mappings

Manuel Gonzalez; Joaquín M. Gutiérrez

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 3, page 469-476
  • ISSN: 0010-2628

Abstract

top
We characterize the holomorphic mappings f between complex Banach spaces that may be written in the form f = T g , where g is another holomorphic mapping and T belongs to a closed surjective operator ideal.

How to cite

top

Gonzalez, Manuel, and Gutiérrez, Joaquín M.. "Surjective factorization of holomorphic mappings." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 469-476. <http://eudml.org/doc/248639>.

@article{Gonzalez2000,
abstract = {We characterize the holomorphic mappings $f$ between complex Banach spaces that may be written in the form $f=T\circ g$, where $g$ is another holomorphic mapping and $T$ belongs to a closed surjective operator ideal.},
author = {Gonzalez, Manuel, Gutiérrez, Joaquín M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {factorization; holomorphic mapping between Banach spaces; operator ideal; surjective factorization; complex Banach space; holomorphic mapping; operator ideal},
language = {eng},
number = {3},
pages = {469-476},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Surjective factorization of holomorphic mappings},
url = {http://eudml.org/doc/248639},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Gonzalez, Manuel
AU - Gutiérrez, Joaquín M.
TI - Surjective factorization of holomorphic mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 469
EP - 476
AB - We characterize the holomorphic mappings $f$ between complex Banach spaces that may be written in the form $f=T\circ g$, where $g$ is another holomorphic mapping and $T$ belongs to a closed surjective operator ideal.
LA - eng
KW - factorization; holomorphic mapping between Banach spaces; operator ideal; surjective factorization; complex Banach space; holomorphic mapping; operator ideal
UR - http://eudml.org/doc/248639
ER -

References

top
  1. Aron R.M., Galindo P., Weakly compact multilinear mappings, Proc. Edinburgh Math. Soc. 40 (1997), 181-192. (1997) Zbl0901.46038MR1437822
  2. Aron R.M., Schottenloher M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30. (1976) Zbl0328.46046MR0402504
  3. Bourgain J., Diestel J., Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. (1984) Zbl0601.47019MR0774176
  4. Davis W.J., Figiel T., Johnson W.B., Pełczyński A., Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. (1974) MR0355536
  5. Dineen S., Complex Analysis in Locally Convex Spaces, Math. Studies 57, North-Holland, Amsterdam, 1981. Zbl0484.46044MR0640093
  6. Domański P., Lindström M., Schlüchtermann G., Grothendieck operators on tensor products, Proc. Amer. Math. Soc. 125 (1997), 2285-2291. (1997) MR1372028
  7. Geiss S., Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149-159. (1987) Zbl0651.46070MR0918674
  8. González M., Dual results of factorization for operators, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 3-11. (1993) MR1207890
  9. González M., Gutiérrez J.M., Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), 117-133. (1996) MR1389759
  10. González M., Gutiérrez J.M., Injective factorization of holomorphic mappings, Proc. Amer. Math. Soc. 127 (1999), 1715-1721. (1999) MR1610897
  11. González M., Onieva V.M., Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), 117-121. (1989) MR0966145
  12. Heinrich S., Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397-411. (1980) Zbl0439.47029MR0563562
  13. Jarchow H., Weakly compact operators on C ( K ) and C * -algebras, in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore, 1988, pp.263-299. Zbl0757.47020MR0979519
  14. Jarchow H., Matter U., On weakly compact operators on C ( K ) -spaces, in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin, 1985, pp.80-88. MR0827762
  15. Lindström M., On compact and bounding holomorphic mappings, Proc. Amer. Math. Soc. 105 (1989), 356-361. (1989) MR0933517
  16. Mujica J., Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam, 1986. Zbl0586.46040MR0842435
  17. Nachbin L., Topology on Spaces of Holomorphic Mappings, Ergeb. Math. Grenzgeb. 47, Springer, Berlin, 1969. Zbl0172.39902MR0254579
  18. Pietsch A., Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam, 1980. Zbl1012.47001MR0582655
  19. Robertson N., Asplund operators and holomorphic maps, Manuscripta Math. 75 (1992), 25-34. (1992) Zbl0805.46044MR1156212
  20. Ryan R.A., Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179-190. (1988) Zbl0605.46038MR0917872
  21. Stephani I., Generating systems of sets and quotients of surjective operator ideals, Math. Nachr. 99 (1980), 13-27. (1980) Zbl0474.47019MR0637639
  22. Valdivia M., On a class of Banach spaces, Studia Math. 60 (1977), 11-13. (1977) Zbl0354.46012MR0430755

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.