Surjective factorization of holomorphic mappings
Manuel Gonzalez; Joaquín M. Gutiérrez
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 3, page 469-476
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGonzalez, Manuel, and Gutiérrez, Joaquín M.. "Surjective factorization of holomorphic mappings." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 469-476. <http://eudml.org/doc/248639>.
@article{Gonzalez2000,
abstract = {We characterize the holomorphic mappings $f$ between complex Banach spaces that may be written in the form $f=T\circ g$, where $g$ is another holomorphic mapping and $T$ belongs to a closed surjective operator ideal.},
author = {Gonzalez, Manuel, Gutiérrez, Joaquín M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {factorization; holomorphic mapping between Banach spaces; operator ideal; surjective factorization; complex Banach space; holomorphic mapping; operator ideal},
language = {eng},
number = {3},
pages = {469-476},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Surjective factorization of holomorphic mappings},
url = {http://eudml.org/doc/248639},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Gonzalez, Manuel
AU - Gutiérrez, Joaquín M.
TI - Surjective factorization of holomorphic mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 469
EP - 476
AB - We characterize the holomorphic mappings $f$ between complex Banach spaces that may be written in the form $f=T\circ g$, where $g$ is another holomorphic mapping and $T$ belongs to a closed surjective operator ideal.
LA - eng
KW - factorization; holomorphic mapping between Banach spaces; operator ideal; surjective factorization; complex Banach space; holomorphic mapping; operator ideal
UR - http://eudml.org/doc/248639
ER -
References
top- Aron R.M., Galindo P., Weakly compact multilinear mappings, Proc. Edinburgh Math. Soc. 40 (1997), 181-192. (1997) Zbl0901.46038MR1437822
- Aron R.M., Schottenloher M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30. (1976) Zbl0328.46046MR0402504
- Bourgain J., Diestel J., Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. (1984) Zbl0601.47019MR0774176
- Davis W.J., Figiel T., Johnson W.B., Pełczyński A., Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. (1974) MR0355536
- Dineen S., Complex Analysis in Locally Convex Spaces, Math. Studies 57, North-Holland, Amsterdam, 1981. Zbl0484.46044MR0640093
- Domański P., Lindström M., Schlüchtermann G., Grothendieck operators on tensor products, Proc. Amer. Math. Soc. 125 (1997), 2285-2291. (1997) MR1372028
- Geiss S., Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149-159. (1987) Zbl0651.46070MR0918674
- González M., Dual results of factorization for operators, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 3-11. (1993) MR1207890
- González M., Gutiérrez J.M., Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), 117-133. (1996) MR1389759
- González M., Gutiérrez J.M., Injective factorization of holomorphic mappings, Proc. Amer. Math. Soc. 127 (1999), 1715-1721. (1999) MR1610897
- González M., Onieva V.M., Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), 117-121. (1989) MR0966145
- Heinrich S., Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397-411. (1980) Zbl0439.47029MR0563562
- Jarchow H., Weakly compact operators on and -algebras, in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore, 1988, pp.263-299. Zbl0757.47020MR0979519
- Jarchow H., Matter U., On weakly compact operators on -spaces, in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin, 1985, pp.80-88. MR0827762
- Lindström M., On compact and bounding holomorphic mappings, Proc. Amer. Math. Soc. 105 (1989), 356-361. (1989) MR0933517
- Mujica J., Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam, 1986. Zbl0586.46040MR0842435
- Nachbin L., Topology on Spaces of Holomorphic Mappings, Ergeb. Math. Grenzgeb. 47, Springer, Berlin, 1969. Zbl0172.39902MR0254579
- Pietsch A., Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam, 1980. Zbl1012.47001MR0582655
- Robertson N., Asplund operators and holomorphic maps, Manuscripta Math. 75 (1992), 25-34. (1992) Zbl0805.46044MR1156212
- Ryan R.A., Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179-190. (1988) Zbl0605.46038MR0917872
- Stephani I., Generating systems of sets and quotients of surjective operator ideals, Math. Nachr. 99 (1980), 13-27. (1980) Zbl0474.47019MR0637639
- Valdivia M., On a class of Banach spaces, Studia Math. 60 (1977), 11-13. (1977) Zbl0354.46012MR0430755
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.