Traces of anisotropic Besov-Lizorkin-Triebel spaces---a complete treatment of the borderline cases

Walter Farkas; Jon Johnsen; Winfried Sickel

Mathematica Bohemica (2000)

  • Volume: 125, Issue: 1, page 1-37
  • ISSN: 0862-7959

Abstract

top
Including the previously untreated borderline cases, the trace spaces (in the distributional sense) of the Besov-Lizorkin-Triebel spaces are determined for the anisotropic (or quasi-homogeneous) version of these classes. The ranges of the traces are in all cases shown to be approximation spaces, and these are shown to be different from the usual spaces precisely in the cases previously untreated. To analyse the new spaces, we carry over some real interpolation results as well as the refined Sobolev embeddings of J. Franke and B. Jawerth to the anisotropic scales.

How to cite

top

Farkas, Walter, Johnsen, Jon, and Sickel, Winfried. "Traces of anisotropic Besov-Lizorkin-Triebel spaces---a complete treatment of the borderline cases." Mathematica Bohemica 125.1 (2000): 1-37. <http://eudml.org/doc/248677>.

@article{Farkas2000,
abstract = {Including the previously untreated borderline cases, the trace spaces (in the distributional sense) of the Besov-Lizorkin-Triebel spaces are determined for the anisotropic (or quasi-homogeneous) version of these classes. The ranges of the traces are in all cases shown to be approximation spaces, and these are shown to be different from the usual spaces precisely in the cases previously untreated. To analyse the new spaces, we carry over some real interpolation results as well as the refined Sobolev embeddings of J. Franke and B. Jawerth to the anisotropic scales.},
author = {Farkas, Walter, Johnsen, Jon, Sickel, Winfried},
journal = {Mathematica Bohemica},
keywords = {anisotropic Besov and Lizorkin-Triebel spaces; approximation spaces; trace operators; boundary problems; interpolation; atomic decompositions; refined Sobolev embeddings; anisotropic scales; anisotropic Besov and Lizorkin-Triebel spaces; approximation spaces; trace operators; boundary problems; interpolation; atomic decompositions; refined Sobolev embeddings; anisotropic scales},
language = {eng},
number = {1},
pages = {1-37},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Traces of anisotropic Besov-Lizorkin-Triebel spaces---a complete treatment of the borderline cases},
url = {http://eudml.org/doc/248677},
volume = {125},
year = {2000},
}

TY - JOUR
AU - Farkas, Walter
AU - Johnsen, Jon
AU - Sickel, Winfried
TI - Traces of anisotropic Besov-Lizorkin-Triebel spaces---a complete treatment of the borderline cases
JO - Mathematica Bohemica
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 125
IS - 1
SP - 1
EP - 37
AB - Including the previously untreated borderline cases, the trace spaces (in the distributional sense) of the Besov-Lizorkin-Triebel spaces are determined for the anisotropic (or quasi-homogeneous) version of these classes. The ranges of the traces are in all cases shown to be approximation spaces, and these are shown to be different from the usual spaces precisely in the cases previously untreated. To analyse the new spaces, we carry over some real interpolation results as well as the refined Sobolev embeddings of J. Franke and B. Jawerth to the anisotropic scales.
LA - eng
KW - anisotropic Besov and Lizorkin-Triebel spaces; approximation spaces; trace operators; boundary problems; interpolation; atomic decompositions; refined Sobolev embeddings; anisotropic scales; anisotropic Besov and Lizorkin-Triebel spaces; approximation spaces; trace operators; boundary problems; interpolation; atomic decompositions; refined Sobolev embeddings; anisotropic scales
UR - http://eudml.org/doc/248677
ER -

References

top
  1. S. Agmon L. Hörmander, 10.1007/BF02786703, J. Anal. Math. 1 (1976), 1-38. (1976) MR0466902DOI10.1007/BF02786703
  2. N. Aronszajn, Boundary values of functions with finite Dirichlet integral, Studies in Eigenvalue Problems, vol. 14, Univ. of Kansas, 1955. (1955) Zbl0068.08201
  3. J. Bergh J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. (1976) MR0482275
  4. O. V. Besov V. P. Ilyin S. M. Nikol'skij, Integral Representations of Functions, Imbedding Theorems, Nauka, Moskva, 1967. (In Russian.) (1967) 
  5. V. I. Burenkov M. L. Gol'dman, On the extensions of functions of L p , Trudy Mat. Inst. Steklov. 150 (1979), 31-51. English transl. 1981, no. 4, 33-53. (1979) MR0544003
  6. P. Dintelmann, On Fourier multipliers between anisotropic weighted function spaces, Ph.D.Thesis, TH Darmstadt, 1995. (In German.) (1995) 
  7. P. Dintelmann, 10.1002/mana.19951730108, Math. Nachr. 173 (1995). 115-130. (1995) MR1336956DOI10.1002/mana.19951730108
  8. W. Farkas, Atomic and subatomic decompositions in anisotropic function spaces, Math. Nachr. To appear. Zbl0954.46021MR1734360
  9. C. Fefferman E. M. Stein, 10.2307/2373450, Amer. J. Math. 93 (1971), 107-115. (1971) MR0284802DOI10.2307/2373450
  10. J. Franke, 10.1002/mana.19861250104, Math. Nachr. 125 (1986), 29-68. (1986) MR0847350DOI10.1002/mana.19861250104
  11. M. Frazier B. Jawerth, 10.1512/iumj.1985.34.34041, Indiana Univ. Math, J. 34 (1985), 777-799. (1985) MR0808825DOI10.1512/iumj.1985.34.34041
  12. M. Frazier B. Jawerth, 10.1016/0022-1236(90)90137-A, J. Functional Anal. 93 (1990), 34-170. (1990) MR1070037DOI10.1016/0022-1236(90)90137-A
  13. E. Gagliardo, Caraterizzazioni della trace sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305. (1957) MR0102739
  14. G. Grubb, 10.1080/03605309908820688, Comm. Partial Differential Equations 15 (1990), 289-340. (1990) MR1044427DOI10.1080/03605309908820688
  15. G. Grubb, Functional Calculus of Pseudodifferential Boundary Problems, Birkhäuser, Basel, 1996, second edition. (1996) Zbl0844.35002MR1385196
  16. G. Grubb, 10.1007/BF02571889, Math. Z. 218 (1995), 43-90. (1995) MR1312578DOI10.1007/BF02571889
  17. L. Hörmander, The Analysis of Linear Partial Differential Operators I-IV, Springer, Berlin, 1983-85. (1983) MR0717035
  18. B. Jawerth, 10.7146/math.scand.a-11678, Math. Scand. 40 (1977), 94-104. (1977) Zbl0358.46023MR0454618DOI10.7146/math.scand.a-11678
  19. B. Jawerth, The trace of Sobolev and Besov spaces if 0 < p < 1, Studla Math. 62 (1978), 65-71. (1978) Zbl0423.46022MR0482141
  20. J. Johnsen, 10.1002/mana.19951750107, Math. Nachr. 175 (1995), 85-133. (1995) Zbl0839.46026MR1355014DOI10.1002/mana.19951750107
  21. J. Johnsen, 10.7146/math.scand.a-12593, Math. Scand. 79 (1996), 25-85. (1996) Zbl0873.35023MR1425081DOI10.7146/math.scand.a-12593
  22. J. Johnsen, Traces of Besov spaces revisited, Submitted 1998. (1998) 
  23. G. A. Kalyabin, Description of traces for anisotropic spaces of Triebel-Lizorkin type, Trudy Mat. Inst. Steklov. 150 (1979), 160-173. English transl. 1981, no. 4, 169-183. (1979) Zbl0417.46040MR0544009
  24. J. Marschall, 10.4171/ZAA/691, Z. Anal. Anwendungen 15(1996), 109-148. (1996) MR1376592DOI10.4171/ZAA/691
  25. Yu. V. Netrusov, Imbedding theorems of traces of Besov spaces and Lizorkin-Triebel spaces, Dokl. AN SSSR 298 (1988), no. 6. English transl. Soviet Math. Doki. 37 (1988), no. 1, 270-273. (1988) MR0947796
  26. Yu. V. Netrusov, Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Trudy Mat. Inst. Steklov. 187(1989), 162-177. English transl. 199, no. 3, 185-203. (1989) MR1006450
  27. S. M. Nikol'skij, Inequalities for entire analytic functions of finite order and their application to the theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov. 38 (1951), 244-278. Detailed review available in Math. Reviews. (1951) 
  28. S. M. Nikol'skij, Approximation of Functions of Several Variables end Imbedding Theorems, Springer, Berlin, 1975. (1975) 
  29. M. Oberguggenberger, Multiplication of distributions and applications to partial differential equations, Pitman notes, vol. 259, Longman Scientific & Technical, England, 1992. (1992) Zbl0818.46036
  30. P. Oswald, Multilevel Finite Element Approximation: Theory and Applications, Teubner, Stuttgart, 1995. (1995) MR1312165
  31. J. Peetre, The trace of Besov spaces-a limiting case, Technical Report, Lund, 1975. (1975) 
  32. T. Runst W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations, De Gruyter, Berlin, 1996. (1996) MR1419319
  33. H.-J. Schmeisser H. Triebel, Topics in Fourier Analysis and Function Spaces, Wiley, Chichester, 1987. (1987) MR0891189
  34. A.Seeger, A note on Triebel-Lizorkin spaces, Approximations and Function Spaces, vol. 22, Banach Centre Publ., PWN Polish Sci. Publ., Warszaw, 1989, pp. 391-400. (1989) Zbl0698.42008MR1097208
  35. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. (1970) Zbl0207.13501MR0290095
  36. E. M. Stein S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), J 239-1295. (1978) MR0508453
  37. B. Stöckert H. Triebel, 10.1002/mana.19790890121, Math. Nachr. 89 (1979), 247-267. (1979) MR0546886DOI10.1002/mana.19790890121
  38. H. Triebel, Fourier Analysis and Function Spaces, Teubner-Texte Math., vol. 7, Teubner, Leipzig, 1977. (1977) Zbl0345.42003MR0493311
  39. H. Triebel, Spaces of Besov-Hardy-Sobolev Type, Teubner-Texte Math., vol. 8, Teubner, Leipzig, 1978. (1978) Zbl0408.46024MR0581907
  40. H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. (1983) Zbl0546.46028MR0781540
  41. H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992. (1992) Zbl0763.46025MR1163193
  42. H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997. (1997) Zbl0898.46030MR1484417
  43. M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I: Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 33 (1986), 131-174. (1986) Zbl0608.47058MR0837335
  44. M. Yamazaki, A quasi-homogeneous version of paradifferential operators, II: A symbolic calculus, J.Fac. Sci. Univ. Tokyo, Sect. IA Math. 33 (1986), 311-345. (1986) MR0866396

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.