Asymptotic behaviour of solutions of some linear delay differential equations
Mathematica Bohemica (2000)
- Volume: 125, Issue: 3, page 355-364
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topČermák, Jan. "Asymptotic behaviour of solutions of some linear delay differential equations." Mathematica Bohemica 125.3 (2000): 355-364. <http://eudml.org/doc/248684>.
@article{Čermák2000,
abstract = {In this paper we investigate the asymptotic properties of all solutions of the delay differential equation
y’(x)=a(x)y((x))+b(x)y(x), xI=[x0,).
We set up conditions under which every solution of this equation can be represented in terms of a solution of the differential equation
z’(x)=b(x)z(x), xI
and a solution of the functional equation
|a(x)|((x))=|b(x)|(x), xI.},
author = {Čermák, Jan},
journal = {Mathematica Bohemica},
keywords = {asymptotic behaviour; differential equation; delayed argument; functional equation; asymptotic behaviour; differential equation; delayed argument; functional equation},
language = {eng},
number = {3},
pages = {355-364},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic behaviour of solutions of some linear delay differential equations},
url = {http://eudml.org/doc/248684},
volume = {125},
year = {2000},
}
TY - JOUR
AU - Čermák, Jan
TI - Asymptotic behaviour of solutions of some linear delay differential equations
JO - Mathematica Bohemica
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 125
IS - 3
SP - 355
EP - 364
AB - In this paper we investigate the asymptotic properties of all solutions of the delay differential equation
y’(x)=a(x)y((x))+b(x)y(x), xI=[x0,).
We set up conditions under which every solution of this equation can be represented in terms of a solution of the differential equation
z’(x)=b(x)z(x), xI
and a solution of the functional equation
|a(x)|((x))=|b(x)|(x), xI.
LA - eng
KW - asymptotic behaviour; differential equation; delayed argument; functional equation; asymptotic behaviour; differential equation; delayed argument; functional equation
UR - http://eudml.org/doc/248684
ER -
References
top- F. V. Atkinson J. R. Haddock, 10.1016/0022-247X(83)90161-0, J. Math. Anal. Appl. 91 (1983), 410-423. (1983) MR0690880DOI10.1016/0022-247X(83)90161-0
- N. G. de Bruijn, 10.2307/2372246, Amer. J. Math. 71 (1949), 313-330. (1949) Zbl0033.27002MR0029065DOI10.2307/2372246
- J. Čermák, On the asymptotic behaviour of solutions of some functional-differential equations, Math. Slovaca 48 (1998), 187-212. (1998) MR1647674
- J. Čermák, 10.1006/jmaa.1998.6018, J. Math. Anal. Appl. 225 (1998), 373-388. (1998) MR1644331DOI10.1006/jmaa.1998.6018
- J. Diblík, 10.1006/jmaa.1997.5709, J. Math. Anal Appl 217 (1998), 200-215. (1998) MR1492085DOI10.1006/jmaa.1997.5709
- I. Győri M. Pituk, Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynam. Systems Appl. 5 (1996), 277-302. (1996) MR1396192
- J. K. Hale S. M. Verduyn Lunel, Functional Differential Equations, Springer-Verlag, New York, 1993. (1993)
- M. L. Heard, 10.1016/0022-0396(75)90076-5, J. Differential Equations 18 (1975), 1-10. (1975) Zbl0318.34069MR0387766DOI10.1016/0022-0396(75)90076-5
- T. Kato J. B. McLeod, [unknown], Bull. Amer. Math. Soc. 77 (1971), 891-937. (1971) MR0283338
- M. Kuczma B. Choczewski R. Ger, Iterative Functional Equations, Encyclopedia of Mathematics and Its Applications, Cambridge Univ. Press, Cambridge, England, 1990. (1990) MR1067720
- F. Neuman, On transformations of differential equations and systems with deviating argument, Czechoslovak Math, J. 31 (1981), 87-90. (1981) Zbl0463.34051MR0604115
- S. N. Zhang, Asymptotic behaviour and structure of solutions for equation , J. Anhui Normal Univ. Nat. Sci. 2 (1981), 11-21. (In Chinese.) (1981)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.