On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, II
Giovanni Coppola; Saverio Salerno
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 93-102
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCoppola, Giovanni, and Salerno, Saverio. "On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, II." Journal de théorie des nombres de Bordeaux 13.1 (2001): 93-102. <http://eudml.org/doc/248705>.
@article{Coppola2001,
abstract = {This paper gives further results about the distribution in the arithmetic progressions (modulo a product of two primes) of reducible quadratic polynomials $(an + b)(cn + d)$ in short intervals $n \in [x, x + x^\vartheta ]$, where now $\vartheta \in (0,1]$. Here we use the Dispersion Method instead of the Large Sieve to get results beyond the classical level $\vartheta $, reaching $3\vartheta /2$ (thus improving also the level of the previous paper, i.e. $3\vartheta - 3/2$), but our new results are different in structure. Then, we make a graphical comparison of the two methods.},
author = {Coppola, Giovanni, Salerno, Saverio},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {93-102},
publisher = {Université Bordeaux I},
title = {On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, II},
url = {http://eudml.org/doc/248705},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Coppola, Giovanni
AU - Salerno, Saverio
TI - On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, II
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 93
EP - 102
AB - This paper gives further results about the distribution in the arithmetic progressions (modulo a product of two primes) of reducible quadratic polynomials $(an + b)(cn + d)$ in short intervals $n \in [x, x + x^\vartheta ]$, where now $\vartheta \in (0,1]$. Here we use the Dispersion Method instead of the Large Sieve to get results beyond the classical level $\vartheta $, reaching $3\vartheta /2$ (thus improving also the level of the previous paper, i.e. $3\vartheta - 3/2$), but our new results are different in structure. Then, we make a graphical comparison of the two methods.
LA - eng
UR - http://eudml.org/doc/248705
ER -
References
top- [1] E. Bombieri, Le grand crible dans la théorie analytique des nombres. Astérisque18, Société mathématique de France, 1974. Zbl0292.10035MR371840
- [2] G. Coppola, S. Salerno, On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals. Functiones et ApproximatioXXVIII (2001), 75-81. Zbl1041.11063MR1823993
- [3] H. Halberstam, H.E. Richert, Sieve methods. Academic Press, London, 1974. Zbl0298.10026MR424730
- [4] C. Hooley, On the greatest prime factor of a quadratic polynomial. Acta Math.117 (1967), 281-299. Zbl0146.05704MR204383
- [5] H. Iwaniec, Almost-primes represented by quadratic polynomials. Inventiones Math.47 (1978), 171-188. Zbl0389.10031MR485740
- [6] Ju.V. Linnik, The dispersion method in binary additive problems. American Mathematical Society, 1963. Zbl0112.27402MR168543
- [7] S. Salerno, A. Vitolo, On the distribution in the arithmetic progressions of reducible quadratic polynomials. Izwestiya Rossiyskoy AN, Math.Series58 (1994), 211-223. Zbl0839.11040MR1307065
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.