# Zhang-Zagier heights of perturbed polynomials

Journal de théorie des nombres de Bordeaux (2001)

- Volume: 13, Issue: 1, page 103-110
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topDoche, Christophe. "Zhang-Zagier heights of perturbed polynomials." Journal de théorie des nombres de Bordeaux 13.1 (2001): 103-110. <http://eudml.org/doc/248716>.

@article{Doche2001,

abstract = {In a previous article we studied the spectrum of the Zhang-Zagier height [2]. The progress we made stood on an algorithm that produced polynomials with a small height. In this paper we describe a new algorithm that provides even smaller heights. It allows us to find a limit point less than $1.289735$ i.e. better than the previous one, namely $1.2916674$. After some definitions we detail the principle of the algorithm, the results it gives and the construction that leads to this new limit point.},

author = {Doche, Christophe},

journal = {Journal de théorie des nombres de Bordeaux},

language = {eng},

number = {1},

pages = {103-110},

publisher = {Université Bordeaux I},

title = {Zhang-Zagier heights of perturbed polynomials},

url = {http://eudml.org/doc/248716},

volume = {13},

year = {2001},

}

TY - JOUR

AU - Doche, Christophe

TI - Zhang-Zagier heights of perturbed polynomials

JO - Journal de théorie des nombres de Bordeaux

PY - 2001

PB - Université Bordeaux I

VL - 13

IS - 1

SP - 103

EP - 110

AB - In a previous article we studied the spectrum of the Zhang-Zagier height [2]. The progress we made stood on an algorithm that produced polynomials with a small height. In this paper we describe a new algorithm that provides even smaller heights. It allows us to find a limit point less than $1.289735$ i.e. better than the previous one, namely $1.2916674$. After some definitions we detail the principle of the algorithm, the results it gives and the construction that leads to this new limit point.

LA - eng

UR - http://eudml.org/doc/248716

ER -

## References

top- [1] J. Dégot, J.-C. Hohl, O. Jenvrin, Calcul numérique de la mesure de Mahler d'un polynome par itérations de Graeffe. C.R. Acad. Sci. Paris320 (1995), 269-272. Zbl0834.30006MR1320369
- [2] C. Doche, On the spectrum of the Zhang-Zagier height. Math. Comp.70 (2001), no. 233, 419-430. Zbl0960.11047MR1681120
- [3] G.P. Dresden, Orbits of algebraic numbers with low heights. Math. Comp.67 (1998), 815-820. Zbl0926.11078MR1468942
- [4] V. Flammang, Mesures de polynômes. Applications au diamètre transfini entier. Thèse de l'Université de Metz, 1994.
- [5] V. Flammang, Two new points in the spectrum of the absolute Mahler measure of totally positive algebraic integers. Math. Comp.65 (1996), 307-311. Zbl0852.11058MR1320894
- [6] M.J. Mossinghoff, C.G. Pinner, J.D. Vaaler, Perturbing polynomials with all their roots on the unit circle. Math. Comp.67 (1998), 1707-1726. Zbl0909.12003MR1604387
- [7] C.J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer. Bull. London Math. Soc.3 (1971), 169-175. Zbl0235.12003MR289451
- [8] C.J. Smyth, On the measure of totally real algebraic integers II. Math. Comp.37 (1981), 205-208. Zbl0475.12001MR616373
- [9] D. Zagier, Algebraic numbers close both to 0 and 1. Math. Comp.61 (1993), 485-491. Zbl0786.11063MR1197513
- [10] S. Zhang, Positive line bundles on arithmetic surfaces. Ann. of Math.136 (1992), 569-587. Zbl0788.14017MR1189866

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.