Incomplete character sums and a special class of permutations
S. D. Cohen; H. Niederreiter; I. E. Shparlinski; M. Zieve
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 53-63
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCohen, S. D., et al. "Incomplete character sums and a special class of permutations." Journal de théorie des nombres de Bordeaux 13.1 (2001): 53-63. <http://eudml.org/doc/248719>.
@article{Cohen2001,
abstract = {We present a method of bounding incomplete character sums for finite abelian groups with arguments produced by a first-order recursion. This method is particularly effective if the recursion involves a special type of permutation called an $\mathcal \{R\}$-orthomorphism. Examples of $\mathcal \{R\}$-orthomorphisms are given.},
author = {Cohen, S. D., Niederreiter, H., Shparlinski, I. E., Zieve, M.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {incomplete character sum; permutation; pseudorandom sequence; orthomorphisms},
language = {eng},
number = {1},
pages = {53-63},
publisher = {Université Bordeaux I},
title = {Incomplete character sums and a special class of permutations},
url = {http://eudml.org/doc/248719},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Cohen, S. D.
AU - Niederreiter, H.
AU - Shparlinski, I. E.
AU - Zieve, M.
TI - Incomplete character sums and a special class of permutations
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 53
EP - 63
AB - We present a method of bounding incomplete character sums for finite abelian groups with arguments produced by a first-order recursion. This method is particularly effective if the recursion involves a special type of permutation called an $\mathcal {R}$-orthomorphism. Examples of $\mathcal {R}$-orthomorphisms are given.
LA - eng
KW - incomplete character sum; permutation; pseudorandom sequence; orthomorphisms
UR - http://eudml.org/doc/248719
ER -
References
top- [1] T. Cochrane, On a trigonometric inequality of Vinogradov. J. Number Theory27 (1987), 9-16. Zbl0629.10030MR904002
- [2] J. Dénes, P.J. Owens, Some new Latin power sets not based on groups. J. Combinatorial Theory Ser. A85 (1999), 69-82. Zbl0913.05025MR1659456
- [3] J. Gutierrez, H. Niederreiter, I.E. Shparlinski, On the multidimensional distribution of inversive congruential pseudorandom numbers in parts of the period. Monatsh. Math.129 (2000), 31-36. Zbl1011.11053MR1741034
- [4] N.M. Korobov, On the distribution of digits in periodic fractions. Math. USSR Sbornik18 (1972), 659-676. Zbl0273.10007MR424660
- [5] R. Lidl, H. Niederreiter, Finite Fields. Cambridge Univ. Press, Cambridge, 1997. Zbl0866.11069MR1429394
- [6] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc.84 (1978), 957-1041. Zbl0404.65003MR508447
- [7] H. Niederreiter, I.E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period. Math. Comp., to appear. Zbl0983.11048MR1836919
- [8] H. Niederreiter, I.E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers. Finite Fields Appl.5 (1999), 246-253. Zbl0942.11037MR1702905
- [9] H. Niederreiter, I.E. Shparlinski, Exponential sums and the distribution of inversive congruential pseudorandom numbers with prime-power modulus. Acta Arith.92 (2000), 89-98. Zbl0949.11036MR1739735
- [10] H. Niederreiter, I.E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods. Applicable Algebra Engrg. Comm. Comput.10 (2000),189-202. Zbl0999.11040MR1751430
- [11] C.P. Schnorr, S. Vaudenay, Black box cryptanalysis of hash networks based on multipermutations. Advances in Cryptology - EUROCRYPT '94 (A. De Santis, ed.), Lecture Notes in Computer Science, Vol. 950, pp. 47-57, Springer, Berlin, 1995. Zbl0909.94013MR1479648
- [12] I.E. Shparlinski, Finite Fields: Theory and Computation. Kluwer Academic Publ., Dordrecht, 1999. Zbl0967.11052MR1745660
- [13] J.H. Van Lint, R.M. Wilson, A Course in Combinatorics. Cambridge Univ. Press, Cambridge, 1992. Zbl0769.05001MR1207813
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.