Incomplete character sums and a special class of permutations

S. D. Cohen; H. Niederreiter; I. E. Shparlinski; M. Zieve

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 1, page 53-63
  • ISSN: 1246-7405

Abstract

top
We present a method of bounding incomplete character sums for finite abelian groups with arguments produced by a first-order recursion. This method is particularly effective if the recursion involves a special type of permutation called an -orthomorphism. Examples of -orthomorphisms are given.

How to cite

top

Cohen, S. D., et al. "Incomplete character sums and a special class of permutations." Journal de théorie des nombres de Bordeaux 13.1 (2001): 53-63. <http://eudml.org/doc/248719>.

@article{Cohen2001,
abstract = {We present a method of bounding incomplete character sums for finite abelian groups with arguments produced by a first-order recursion. This method is particularly effective if the recursion involves a special type of permutation called an $\mathcal \{R\}$-orthomorphism. Examples of $\mathcal \{R\}$-orthomorphisms are given.},
author = {Cohen, S. D., Niederreiter, H., Shparlinski, I. E., Zieve, M.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {incomplete character sum; permutation; pseudorandom sequence; orthomorphisms},
language = {eng},
number = {1},
pages = {53-63},
publisher = {Université Bordeaux I},
title = {Incomplete character sums and a special class of permutations},
url = {http://eudml.org/doc/248719},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Cohen, S. D.
AU - Niederreiter, H.
AU - Shparlinski, I. E.
AU - Zieve, M.
TI - Incomplete character sums and a special class of permutations
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 53
EP - 63
AB - We present a method of bounding incomplete character sums for finite abelian groups with arguments produced by a first-order recursion. This method is particularly effective if the recursion involves a special type of permutation called an $\mathcal {R}$-orthomorphism. Examples of $\mathcal {R}$-orthomorphisms are given.
LA - eng
KW - incomplete character sum; permutation; pseudorandom sequence; orthomorphisms
UR - http://eudml.org/doc/248719
ER -

References

top
  1. [1] T. Cochrane, On a trigonometric inequality of Vinogradov. J. Number Theory27 (1987), 9-16. Zbl0629.10030MR904002
  2. [2] J. Dénes, P.J. Owens, Some new Latin power sets not based on groups. J. Combinatorial Theory Ser. A85 (1999), 69-82. Zbl0913.05025MR1659456
  3. [3] J. Gutierrez, H. Niederreiter, I.E. Shparlinski, On the multidimensional distribution of inversive congruential pseudorandom numbers in parts of the period. Monatsh. Math.129 (2000), 31-36. Zbl1011.11053MR1741034
  4. [4] N.M. Korobov, On the distribution of digits in periodic fractions. Math. USSR Sbornik18 (1972), 659-676. Zbl0273.10007MR424660
  5. [5] R. Lidl, H. Niederreiter, Finite Fields. Cambridge Univ. Press, Cambridge, 1997. Zbl0866.11069MR1429394
  6. [6] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc.84 (1978), 957-1041. Zbl0404.65003MR508447
  7. [7] H. Niederreiter, I.E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period. Math. Comp., to appear. Zbl0983.11048MR1836919
  8. [8] H. Niederreiter, I.E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers. Finite Fields Appl.5 (1999), 246-253. Zbl0942.11037MR1702905
  9. [9] H. Niederreiter, I.E. Shparlinski, Exponential sums and the distribution of inversive congruential pseudorandom numbers with prime-power modulus. Acta Arith.92 (2000), 89-98. Zbl0949.11036MR1739735
  10. [10] H. Niederreiter, I.E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods. Applicable Algebra Engrg. Comm. Comput.10 (2000),189-202. Zbl0999.11040MR1751430
  11. [11] C.P. Schnorr, S. Vaudenay, Black box cryptanalysis of hash networks based on multipermutations. Advances in Cryptology - EUROCRYPT '94 (A. De Santis, ed.), Lecture Notes in Computer Science, Vol. 950, pp. 47-57, Springer, Berlin, 1995. Zbl0909.94013MR1479648
  12. [12] I.E. Shparlinski, Finite Fields: Theory and Computation. Kluwer Academic Publ., Dordrecht, 1999. Zbl0967.11052MR1745660
  13. [13] J.H. Van Lint, R.M. Wilson, A Course in Combinatorics. Cambridge Univ. Press, Cambridge, 1992. Zbl0769.05001MR1207813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.