Newforms, inner twists, and the inverse Galois problem for projective linear groups
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 2, page 395-411
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDieulefait, Luis V.. "Newforms, inner twists, and the inverse Galois problem for projective linear groups." Journal de théorie des nombres de Bordeaux 13.2 (2001): 395-411. <http://eudml.org/doc/248730>.
@article{Dieulefait2001,
abstract = {We reformulate more explicitly the results of Momose, Ribet and Papier concerning the images of the Galois representations attached to newforms without complex multiplication, restricted to the case of weight $2$ and trivial nebentypus. We compute two examples of these newforms, with a single inner twist, and we prove that for every inert prime greater than $3$ the image is as large as possible. As a consequence, we prove that the groups $\text\{PGL\}(2,\mathbb \{F\}_\{\ell ^2\})$ for every prime $(\ell \equiv 3,5 (\text\{mod \} 8), \ell > 3)$, and $\text\{PGL\}(2,\mathbb \{F\}_\{\ell ^5\})$ for every prime $\ell \lnot \equiv 0 \pm 1 (\text\{mod \} 11); \ell > 3)$, are Galois groups over $\mathbb \{Q\}$.},
author = {Dieulefait, Luis V.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Galois representations; new forms; Galois groups},
language = {eng},
number = {2},
pages = {395-411},
publisher = {Université Bordeaux I},
title = {Newforms, inner twists, and the inverse Galois problem for projective linear groups},
url = {http://eudml.org/doc/248730},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Dieulefait, Luis V.
TI - Newforms, inner twists, and the inverse Galois problem for projective linear groups
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 395
EP - 411
AB - We reformulate more explicitly the results of Momose, Ribet and Papier concerning the images of the Galois representations attached to newforms without complex multiplication, restricted to the case of weight $2$ and trivial nebentypus. We compute two examples of these newforms, with a single inner twist, and we prove that for every inert prime greater than $3$ the image is as large as possible. As a consequence, we prove that the groups $\text{PGL}(2,\mathbb {F}_{\ell ^2})$ for every prime $(\ell \equiv 3,5 (\text{mod } 8), \ell > 3)$, and $\text{PGL}(2,\mathbb {F}_{\ell ^5})$ for every prime $\ell \lnot \equiv 0 \pm 1 (\text{mod } 11); \ell > 3)$, are Galois groups over $\mathbb {Q}$.
LA - eng
KW - Galois representations; new forms; Galois groups
UR - http://eudml.org/doc/248730
ER -
References
top- [AL70] A. Atkin, J. Lehner, Hecke operators on Γ0(m). Math. Ann.185 (1970), 134-160. Zbl0177.34901
- [B95] A. Brumer, The rank of J0(N). Astérisque228 (1995), 41-68. Zbl0851.11035MR1330927
- [C89] H. Carayol, Sur les representations galoisiennes modulo l attachées aux formes modulaires. Duke Math. J.59 (1989), 785-801. Zbl0703.11027MR1046750
- [C92] J. Cremona, Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields. J. London Math. Soc.45 (1992), 404-416. Zbl0773.14023MR1180252
- [D71] P. Deligne, Formes modulaires et représentations -adiques. Lecture Notes in Mathematics179Springer-Verlag, Berlin-New York, 1971, 139-172. Zbl0206.49901
- [FJ95] G. Faltings, B. Jordan, Crystalline cohomology and GL(2,Q). Israel J. Math.90 (1995), 1-66. Zbl0854.14010MR1336315
- [K77] N. Katz, A result on modular forms in characteristic p. Lecture Notes in Math.601, 53-61, Springer, Berlin, 1977. Zbl0392.10026MR463169
- [L89] R. Livné, On the conductors of mod Galois representations coming from modular forms. J. Number Theory31 (1989), 133-141. Zbl0674.10024MR987567
- [M81] F. Momose, On the -adic representations attached to modular forms. J. Fac. Sci. Univ. Tokyo, Sect. IA Math.28:1 (1981), 89-109. Zbl0482.10023MR617867
- [Q98] J. Quer, La classe de Brauer de l'algèbre d'endomorphismes d'une variété abélienne modulaire. C. R. Acad. Sci. Paris Sér. I Math.327 (1998), 227-230. Zbl0936.14032MR1650241
- [RV95] A. Reverter, N. Vila, Some projective linear groups over finite fields as Galois groups over Q. Contemporary Math.186 (1995), 51-63. Zbl0836.12003MR1352266
- [R75] K.A. Ribet, On -adic representations attached to modular forms. Invent. Math.28 (1975), 245-275. Zbl0302.10027MR419358
- [R77] K.A. Ribet, Galois representations attached to eigenforms with nebentypus. Lecture Notes in Math.601, 17-51, Springer, Berlin, 1977. Zbl0363.10015MR453647
- [R80] K.A. Ribet, Twists of modular forms and endomorphisms of Abelian Varieties, Math. Ann.253 (1980), 43-62. Zbl0421.14008MR594532
- [R85] K.A. Ribet, On l-adic representations attached to modular forms II, Glasgow Math. J.27 (1985), 185-194. Zbl0596.10027MR819838
- [S71] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan11, 199-208, Princeton University Press, Princeton, N.J., 1971. MR314766
- [S71b] G. Shimura, On elliptic curves with complex multiplication as factors of the jacobian of modular function fields. Nagoya Math. J.43 (1971), 199-208. Zbl0225.14015MR296050
- [St] W. Stein, Hecke: The Modular Forms Calculator. Available at: http://shimura.math.berkeley.edu/~was/Tables/hecke.html.
- [S73] H.P.F. Swinnerton-Dyer, On -adic representations and congruences for coefficients of modular forms. Lecture Notes in Math.350, 1-55, Springer, Berlin, 1973. Zbl0267.10032MR406931
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.