Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral

Márcia Federson; Ricardo Bianconi

Archivum Mathematicum (2001)

  • Volume: 037, Issue: 4, page 307-328
  • ISSN: 0044-8753

Abstract

top
In 1990, Hönig proved that the linear Volterra integral equation x t - ( K ) a , t α t , s x s d s = f t , t a , b , where the functions are Banach space-valued and f is a Kurzweil integrable function defined on a compact interval a , b of the real line , admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation x t - ( K ) a , t α t , s x s d g s = f t , t a , b , in a real-valued context.

How to cite

top

Federson, Márcia, and Bianconi, Ricardo. "Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral." Archivum Mathematicum 037.4 (2001): 307-328. <http://eudml.org/doc/248739>.

@article{Federson2001,
abstract = {In 1990, Hönig proved that the linear Volterra integral equation \[ x\left( t\right) -\,(K)\int \nolimits \_\{\left[ a,t\right] \}\alpha \left( t,s\right) x\left( s\right)\,ds=f\left( t\right)\,,\qquad t\in \left[ a,b\right]\,, \] where the functions are Banach space-valued and $f$ is a Kurzweil integrable function defined on a compact interval $\left[ a,b\right] $ of the real line $\mathbb \{R\}$, admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x\left( t\right) - (K)\int \nolimits \_\{\left[ a,t\right] \}\alpha \left( t,s\right) x\left( s\right) dg\left( s\right) =f\left( t\right) ,\qquad t\in \left[ a,b\right]\,, \] in a real-valued context.},
author = {Federson, Márcia, Bianconi, Ricardo},
journal = {Archivum Mathematicum},
keywords = {linear integral equations; Kurzweil-Henstock integrals; linear integral equations; Kurzweil-Henstock integrals},
language = {eng},
number = {4},
pages = {307-328},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral},
url = {http://eudml.org/doc/248739},
volume = {037},
year = {2001},
}

TY - JOUR
AU - Federson, Márcia
AU - Bianconi, Ricardo
TI - Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 4
SP - 307
EP - 328
AB - In 1990, Hönig proved that the linear Volterra integral equation \[ x\left( t\right) -\,(K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right)\,ds=f\left( t\right)\,,\qquad t\in \left[ a,b\right]\,, \] where the functions are Banach space-valued and $f$ is a Kurzweil integrable function defined on a compact interval $\left[ a,b\right] $ of the real line $\mathbb {R}$, admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x\left( t\right) - (K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right) dg\left( s\right) =f\left( t\right) ,\qquad t\in \left[ a,b\right]\,, \] in a real-valued context.
LA - eng
KW - linear integral equations; Kurzweil-Henstock integrals; linear integral equations; Kurzweil-Henstock integrals
UR - http://eudml.org/doc/248739
ER -

References

top
  1. Federson M., Sobre a existência de soluções para Equações Integrais Lineares com respeito a Integrais de Gauge, Doctor Thesis, Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, 1998, in portuguese. (1998) 
  2. Federson M., The Fundamental Theorem of Calculus for multidimensional Banach space-valued Henstock vector integrals, Real Anal. Exchange 25 (1), (1999-2000), 469–480. (1999) MR1758903
  3. Federson M., Substitution formulas for the vector integrals of Kurzweil and of Henstock, Math. Bohem., (2001), in press. 
  4. Federson M., Bianconi R., Linear integral equations of Volterra concerning the integral of Henstock, Real Anal. Exchange 25 (1), (1999-2000), 389–417. (1999) MR1758896
  5. Gilioli A., Natural ultrabornological non-complete, normed function spaces, Arch. Math. 61 (1993), 465–477. (1993) Zbl0783.46003MR1241052
  6. Henstock R., A Riemann-type integral of Lebesgue power, Canad. J. Math. 20 (1968), 79–87. (1968) Zbl0171.01804MR0219675
  7. Henstock R., The General Theory of Integration, Oxford Math. Monogr., Clarendon Press, Oxford, 1991. (1991) Zbl0745.26006MR1134656
  8. Hönig C. S., The Abstract Riemann-Stieltjes Integral and its Applications to Linear Differential Equations with Generalized Boundary Conditions, Notas do Instituto de Matemática e Estatística da Universidade de São Paulo, Série Matemática, 1, 1973. (1973) Zbl0372.34038MR0460561
  9. Hönig C. S., Volterra-Stieltjes integral equations, Math. Studies 16, North-Holland Publ. Comp., Amsterdam, 1975. (1975) MR0499969
  10. Hönig C. S., Equations intégrales généralisées et applications, Publ. Math. Orsay, 83-01, exposé 5, 1–50. Zbl0507.45017
  11. Hönig C. S., On linear Kurzweil-Henstock integral equations, Seminário Brasileiro de Análise 32 (1990), 283–298. (1990) 
  12. Hönig C. S., On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals, Seminário Brasileiro de Análise 33 (1991), 331–341. (1991) 
  13. Hönig C. S., A Riemannian characterization of the Bochner-Lebesgue integral, Seminário Brasileiro de Análise 35 (1992), 351–358. (1992) 
  14. Kurzweil J., Nichtabsolut Konvergente Integrale, Leipzig, 1980. (1980) Zbl0441.28001MR0597703
  15. Lee P. Y., Lanzhou Lectures on Henstock Integration, World Sci. Singapore, 1989. (1989) Zbl0699.26004MR1050957
  16. Lin, Ying-Jian, On the equivalence of the McShane and Lebesgue integrals, Real Anal. Exchange 21 (2), (1995-96), 767–770. (1995) MR1407292
  17. MacLane S., Birkhoff G., Algebra, The MacMillan Co., London, 1970. (1970) MR0214415
  18. Mawhin J., Introduction a l’Analyse, Cabay, Louvain-la-Neuve, 1983. (1983) 
  19. McLeod R. M., The Generalized Riemann Integral, Carus Math. Monogr. 20, The Math. Ass. of America, 1980. (1980) Zbl0486.26005MR0588510
  20. McShane E. J., A unified theory of integration, Amer. Math. Monthly 80 (1973), 349–359. (1973) Zbl0266.26008MR0318434
  21. Pfeffer W. F., The Riemann Approach to Integration, Cambridge, 1993. (1993) Zbl0804.26005MR1268404
  22. Schwabik S., The Perron integral in ordinary differential equations, Differential Integral Equations 6 (4) (1993), 863–882. (1993) Zbl0784.34006MR1222306
  23. Schwabik S., Abstract Perron-Stieltjes integral, Math. Bohem. 121 (4), (1996), 425–447. (1996) Zbl0879.28021MR1428144
  24. Tvrdý M., Linear integral equations in the space of regulated functions, Math. Bohem. 123 (2), (1998), 177–212. (1998) Zbl0941.45001MR1673977

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.