Inner amenability of Lau algebras

R. Nasr-Isfahani

Archivum Mathematicum (2001)

  • Volume: 037, Issue: 1, page 45-55
  • ISSN: 0044-8753

Abstract

top
A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras.

How to cite

top

Nasr-Isfahani, R.. "Inner amenability of Lau algebras." Archivum Mathematicum 037.1 (2001): 45-55. <http://eudml.org/doc/248754>.

@article{Nasr2001,
abstract = {A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras.},
author = {Nasr-Isfahani, R.},
journal = {Archivum Mathematicum},
keywords = {Lau algebra; inner amenable; topological inner invariant mean; Lau algebra; inner amenable; topological inner invariant mean},
language = {eng},
number = {1},
pages = {45-55},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Inner amenability of Lau algebras},
url = {http://eudml.org/doc/248754},
volume = {037},
year = {2001},
}

TY - JOUR
AU - Nasr-Isfahani, R.
TI - Inner amenability of Lau algebras
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 1
SP - 45
EP - 55
AB - A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras.
LA - eng
KW - Lau algebra; inner amenable; topological inner invariant mean; Lau algebra; inner amenable; topological inner invariant mean
UR - http://eudml.org/doc/248754
ER -

References

top
  1. Akeman C. A., Operator algebras associated with Fuchsian groups, Houston J. Math. 7 (1981), 295–301. (1981) MR0640971
  2. Bekka M. A., Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), 383–401. (1990) Zbl0702.22010MR1047140
  3. Bonsall F. F., Duncan J., Complete normed algebras, Springer-Verlag, New York, 1973. (1973) Zbl0271.46039MR0423029
  4. Choda M., Choda M., Fullness, simplicity and inner amenability, Math. Japon. 24 (1979), 235–246. (1979) Zbl0436.46050MR0550002
  5. Choda M., The factors of inner amenable groups, Math. Japon. 24 (1979), 145–152. (1979) Zbl0407.46055MR0539400
  6. Choda M., Effect of inner amenability on strong ergodicity, Math. Japon. 28 (1983), 109–115. (1983) Zbl0523.46040MR0692558
  7. Effros E. G., Property Γ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486. (1975) Zbl0321.22011MR0355626
  8. Ghahramani F., Lau A. T., Multipliers and modulus on Banach algebras related to locally compact groups, J. Funct. Anal. 150 (1997), 478–497. (1997) Zbl0891.22007MR1479549
  9. Kaniuth E., Markfort A., The conjugation representation and inner amenability of discrete groups, J. Reine Angew. Math. 432 (1992), 23–37. (1992) Zbl0754.22001MR1184756
  10. Lau A. T., Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175. (1983) MR0736276
  11. Lau A. T., Uniformly continuous functionals on Banach algebras, Colloq. Math. LI (1987), 195–205. (1987) Zbl0621.43005MR0891287
  12. Lau A. T., Paterson A. L., Operator theoretic characterizations of [IN]-groups and inner amenability, Proc. Amer. Math. Soc. 102 (1988), 155–169. (1988) Zbl0644.43002MR0934862
  13. Lau A. T., Paterson A. L., Inner amenable locally compact groups, Trans. Amer. Math. Soc. 325 (1991), 155–169. (1991) Zbl0718.43002MR1010885
  14. Lau A. T., Wong J. C., Invariant subspaces for algebras of linear operators and amenable locally compact groups, Proc. Amer. Math. Soc. 102 (1988), 581–586. (1988) Zbl0645.43002MR0928984
  15. Ling J. M., Inner amenable semigroups I, J. Math. Soc. Japan 49 (1997), 603–616. (1997) Zbl0899.43002MR1452705
  16. Losert V., Rindler H., Asympototically central functions and invariant extensions of Dirac measures, Probability Measures on Groups, Proc. Conf., Oberwolfach, 1983. (1983) MR0772419
  17. Losert V., Rindler H., Conjugate invariant means, Colloq. Math. 15 (1987), 221–225. (1987) MR0891290
  18. Namioka I., Følner condition for amenable semigroups, Math. Scand. 15 (1964), 18–28. (1964) MR0180832
  19. Nasr-Isfahani R., Factorization in some ideals of Lau algebras with application to semigroup algebras, Bull. Belg. Math. Soc. 7 (2000), 429–433. MR1788147
  20. Paschke W. L., Inner amenability and conjugate operators, Proc. Amer. Math. Soc. 71 (1978), 117–118. (1978) MR0473849
  21. Paterson A. L., Amenability, Mathematical Surveys and Monographs, No. 29, Amer. Math. Soc., Providence, R. I., 1988. (1988) Zbl0648.43001MR0961261
  22. Pier J. P., Quasi-invariance interieure sur les groupes localement compacts, Actualités Math. (1982), 431–436. (1982) Zbl0487.43002
  23. Pier J. P., Amenable locally compact groups, John Wiley and Sons, New York, 1984. (1984) Zbl0621.43001MR0767264
  24. Pier J. P., Amenable Banach algebras, Pitman Res. Notes Math. Ser., London, 1988. (1988) Zbl0676.46036MR0942218
  25. Sakai S., C * -algebras and W * -algebras, Springer-Verlag, Berlin and New York, 1971. (1971) Zbl0233.46074MR0442701
  26. Takesaki M., Theory of operator algebras, Springer-Verlag, Berlin and New York, 1979. (1979) Zbl0436.46043MR0548728
  27. Watatani Y., The character groups of amenable group C * -algebras, Math. Japon. 24 (1979), 141–144. (1979) Zbl0412.46050MR0539399
  28. Yuan C. K., The existence of inner invariant means on L ( G ) , J. Math. Anal. Appl. 130 (1988), 514–524. (1988) MR0929957

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.