Random fixed points of increasing compact random maps
Archivum Mathematicum (2001)
- Volume: 037, Issue: 4, page 329-332
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBeg, Ismat. "Random fixed points of increasing compact random maps." Archivum Mathematicum 037.4 (2001): 329-332. <http://eudml.org/doc/248757>.
@article{Beg2001,
abstract = {Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.},
author = {Beg, Ismat},
journal = {Archivum Mathematicum},
keywords = {random fixed point; random map; measurable space; ordered Banach space; random fixed point; random map; measurable space; ordered Banach space},
language = {eng},
number = {4},
pages = {329-332},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Random fixed points of increasing compact random maps},
url = {http://eudml.org/doc/248757},
volume = {037},
year = {2001},
}
TY - JOUR
AU - Beg, Ismat
TI - Random fixed points of increasing compact random maps
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 4
SP - 329
EP - 332
AB - Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.
LA - eng
KW - random fixed point; random map; measurable space; ordered Banach space; random fixed point; random map; measurable space; ordered Banach space
UR - http://eudml.org/doc/248757
ER -
References
top- Beg I., Random fixed points of random operators satisfying semicontractivity conditions, Math. Japon. 46 (1) (1997), 151–155. (1997) Zbl0896.47053MR1466128
- Beg I., Shahzad N., Some random approximation theorem with applications, Nonlinear Anal. 35 (1999), 609–616. (1999) MR1656922
- Bharucha-Reid A. T., Random Integral Equations, Academic Press, New York , 1972. (1972) Zbl0327.60040MR0443086
- Bharucha-Reid A. T., Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641–657. (1976) Zbl0339.60061MR0413273
- Hans O., Reduzierende zulliällige transformaten, Czechoslovak Math. J. 7 (1957), 154–158. (1957) MR0090161
- Hans O., Random operator equations, In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. (1961) Zbl0132.12402MR0146665
- Itoh S., Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261–273. (1979) Zbl0407.60069MR0528687
- Jameson G., Ordered Linear Spaces, Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. (1970) Zbl0196.13401MR0438077
- Lishan L., Some random approximations and random fixed point theorems for 1-set-contractive random operators, Proc. Amer. Math. Soc. 125 (1997), 515–521. (1997) MR1350953
- Papageorgiou N. S., Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 507–514. (1986) Zbl0606.60058MR0840638
- Schaefer H. H., Topological Vector Spaces, Springer Verlag, New York, 1971. (1971) Zbl0217.16002MR0342978
- Sehgal V. M., Waters C., Some random fixed point theorems, Contemporary Math. 21 (1983), 215–218. (1983) Zbl0541.47041MR0729519
- Špaček A., Zufällige gleichungen, Czechoslovak Math. J. 5 (1955), 462–466. (1955) Zbl0068.32701MR0079854
- Tan K. K., Yuan X. Z., Random fixed point theorems and approximations, Stochastic Anal. Appl. 15 (1) (1997), 103–123. (1997) MR1429860
- Zaanen A. C., Introduction to Operator Theory in Riesz Spaces, Springer Verlag, Berlin, 1997. (1997) Zbl0878.47022MR1631533
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.