Random fixed points of increasing compact random maps

Ismat Beg

Archivum Mathematicum (2001)

  • Volume: 037, Issue: 4, page 329-332
  • ISSN: 0044-8753

Abstract

top
Let ( Ω , Σ ) be a measurable space, ( E , P ) be an ordered separable Banach space and let [ a , b ] be a nonempty order interval in E . It is shown that if f : Ω × [ a , b ] E is an increasing compact random map such that a f ( ω , a ) and f ( ω , b ) b for each ω Ω then f possesses a minimal random fixed point α and a maximal random fixed point β .

How to cite

top

Beg, Ismat. "Random fixed points of increasing compact random maps." Archivum Mathematicum 037.4 (2001): 329-332. <http://eudml.org/doc/248757>.

@article{Beg2001,
abstract = {Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.},
author = {Beg, Ismat},
journal = {Archivum Mathematicum},
keywords = {random fixed point; random map; measurable space; ordered Banach space; random fixed point; random map; measurable space; ordered Banach space},
language = {eng},
number = {4},
pages = {329-332},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Random fixed points of increasing compact random maps},
url = {http://eudml.org/doc/248757},
volume = {037},
year = {2001},
}

TY - JOUR
AU - Beg, Ismat
TI - Random fixed points of increasing compact random maps
JO - Archivum Mathematicum
PY - 2001
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 037
IS - 4
SP - 329
EP - 332
AB - Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.
LA - eng
KW - random fixed point; random map; measurable space; ordered Banach space; random fixed point; random map; measurable space; ordered Banach space
UR - http://eudml.org/doc/248757
ER -

References

top
  1. Beg I., Random fixed points of random operators satisfying semicontractivity conditions, Math. Japon. 46 (1) (1997), 151–155. (1997) Zbl0896.47053MR1466128
  2. Beg I., Shahzad N., Some random approximation theorem with applications, Nonlinear Anal. 35 (1999), 609–616. (1999) MR1656922
  3. Bharucha-Reid A. T., Random Integral Equations, Academic Press, New York , 1972. (1972) Zbl0327.60040MR0443086
  4. Bharucha-Reid A. T., Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641–657. (1976) Zbl0339.60061MR0413273
  5. Hans O., Reduzierende zulliällige transformaten, Czechoslovak Math. J. 7 (1957), 154–158. (1957) MR0090161
  6. Hans O., Random operator equations, In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. (1961) Zbl0132.12402MR0146665
  7. Itoh S., Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261–273. (1979) Zbl0407.60069MR0528687
  8. Jameson G., Ordered Linear Spaces, Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. (1970) Zbl0196.13401MR0438077
  9. Lishan L., Some random approximations and random fixed point theorems for 1-set-contractive random operators, Proc. Amer. Math. Soc. 125 (1997), 515–521. (1997) MR1350953
  10. Papageorgiou N. S., Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 507–514. (1986) Zbl0606.60058MR0840638
  11. Schaefer H. H., Topological Vector Spaces, Springer Verlag, New York, 1971. (1971) Zbl0217.16002MR0342978
  12. Sehgal V. M., Waters C., Some random fixed point theorems, Contemporary Math. 21 (1983), 215–218. (1983) Zbl0541.47041MR0729519
  13. Špaček A., Zufällige gleichungen, Czechoslovak Math. J. 5 (1955), 462–466. (1955) Zbl0068.32701MR0079854
  14. Tan K. K., Yuan X. Z., Random fixed point theorems and approximations, Stochastic Anal. Appl. 15 (1) (1997), 103–123. (1997) MR1429860
  15. Zaanen A. C., Introduction to Operator Theory in Riesz Spaces, Springer Verlag, Berlin, 1997. (1997) Zbl0878.47022MR1631533

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.