Selections on Ψ -spaces

Michael Hrušák; Paul J. Szeptycki; Artur Hideyuki Tomita

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 763-769
  • ISSN: 0010-2628

Abstract

top
We show that if 𝒜 is an uncountable AD (almost disjoint) family of subsets of ω then the space Ψ ( 𝒜 ) does not admit a continuous selection; moreover, if 𝒜 is maximal then Ψ ( 𝒜 ) does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.

How to cite

top

Hrušák, Michael, Szeptycki, Paul J., and Tomita, Artur Hideyuki. "Selections on $\Psi $-spaces." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 763-769. <http://eudml.org/doc/248769>.

@article{Hrušák2001,
abstract = {We show that if $\mathcal \{A\}$ is an uncountable AD (almost disjoint) family of subsets of $\omega $ then the space $\Psi (\mathcal \{A\})$ does not admit a continuous selection; moreover, if $\mathcal \{A\}$ is maximal then $\Psi (\mathcal \{A\})$ does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.},
author = {Hrušák, Michael, Szeptycki, Paul J., Tomita, Artur Hideyuki},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {MAD family; Vietoris topology; continuous selection; MAD family; Vietoris topology; continuous selection},
language = {eng},
number = {4},
pages = {763-769},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Selections on $\Psi $-spaces},
url = {http://eudml.org/doc/248769},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Hrušák, Michael
AU - Szeptycki, Paul J.
AU - Tomita, Artur Hideyuki
TI - Selections on $\Psi $-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 763
EP - 769
AB - We show that if $\mathcal {A}$ is an uncountable AD (almost disjoint) family of subsets of $\omega $ then the space $\Psi (\mathcal {A})$ does not admit a continuous selection; moreover, if $\mathcal {A}$ is maximal then $\Psi (\mathcal {A})$ does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
LA - eng
KW - MAD family; Vietoris topology; continuous selection; MAD family; Vietoris topology; continuous selection
UR - http://eudml.org/doc/248769
ER -

References

top
  1. G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko, Selections and suborderability, preprint. MR1971236
  2. Balcar B., Dočkálková J., Simon P., Almost disjoint families of countable sets, Colloq. Math. Soc. János Bolyai, Finite and Infinite Sets 37 59-88 (1984). (1984) MR0818228
  3. van Douwen E.K., Mappings from hyperspaces and convergent sequences, Topology Appl. 34 35-45 (1990). (1990) Zbl0715.54004MR1035458
  4. van Douwen E., The integers and topology, in K. Kunen, J. Vaughn, editors, Handbook of Set Theoretic Topology 111-167 North-Holland (1984). (1984) Zbl0561.54004MR0776622
  5. Kunen K., Set Theory: An Introduction to Independence Proofs, North-Holland Amsterdam (1980). (1980) Zbl0443.03021MR0597342
  6. Mathias A.R.D., Happy families, Ann. Math. Logic 12 59-111 (1977). (1977) Zbl0369.02041MR0491197
  7. van Mill J., Wattel E., Selections and orderability, Proc. Amer. Math. Soc. 83 601-605 (1981). (1981) Zbl0473.54010MR0627702
  8. Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 152-182 (1951). (1951) Zbl0043.37902MR0042109
  9. Mrówka S., Some set-theoretic constructions in topology, Fund. Math. 94 83-92 (1977). (1977) MR0433388
  10. Simon P., A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 749-753 (1980). (1980) Zbl0466.54022MR0597764

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.