On exit laws for semigroups in weak duality
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 4, page 711-719
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBachar, Imed. "On exit laws for semigroups in weak duality." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 711-719. <http://eudml.org/doc/248777>.
@article{Bachar2001,
abstract = {Let $\mathbb \{P\}:=(P_\{t\})_\{t>0\}$ be a measurable semigroup and $m$ a $\sigma $-finite positive measure on a Lusin space $X$. An $m$-exit law for $\mathbb \{P\}$ is a family $(f_\{t\})_\{t>0\}$ of nonnegative measurable functions on $X$ which are finite $m$-a.e. and satisfy for each $s,t >0$$P_\{s\}f_\{t\}=f_\{s+t\}$$m$-a.e. An excessive function $u$ is said to be in $\mathcal \{R\}$ if there exits an $m$-exit law $(f_\{t\})_\{t>0\}$ for $\mathbb \{P\}$ such that $u=\int _\{0\}^\{\infty \}f_\{t\}\,dt$, $m$-a.e. Let $\mathcal \{P\}$ be the cone of $m$-purely excessive functions with respect to $\mathbb \{P\}$ and $\mathcal \{I\} mV$ be the cone of $m$-potential functions. It is clear that $\mathcal \{I\} mV\subseteq \mathcal \{R\}\subseteq \mathcal \{P\}$. In this paper we are interested in the converse inclusion. We extend some results already obtained under the assumption of the existence of a reference measure. Also, we give an integral representation of the mutual energy function.},
author = {Bachar, Imed},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semigroup; weak duality; exit law; semigroup; weak duality; exit law},
language = {eng},
number = {4},
pages = {711-719},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On exit laws for semigroups in weak duality},
url = {http://eudml.org/doc/248777},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Bachar, Imed
TI - On exit laws for semigroups in weak duality
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 711
EP - 719
AB - Let $\mathbb {P}:=(P_{t})_{t>0}$ be a measurable semigroup and $m$ a $\sigma $-finite positive measure on a Lusin space $X$. An $m$-exit law for $\mathbb {P}$ is a family $(f_{t})_{t>0}$ of nonnegative measurable functions on $X$ which are finite $m$-a.e. and satisfy for each $s,t >0$$P_{s}f_{t}=f_{s+t}$$m$-a.e. An excessive function $u$ is said to be in $\mathcal {R}$ if there exits an $m$-exit law $(f_{t})_{t>0}$ for $\mathbb {P}$ such that $u=\int _{0}^{\infty }f_{t}\,dt$, $m$-a.e. Let $\mathcal {P}$ be the cone of $m$-purely excessive functions with respect to $\mathbb {P}$ and $\mathcal {I} mV$ be the cone of $m$-potential functions. It is clear that $\mathcal {I} mV\subseteq \mathcal {R}\subseteq \mathcal {P}$. In this paper we are interested in the converse inclusion. We extend some results already obtained under the assumption of the existence of a reference measure. Also, we give an integral representation of the mutual energy function.
LA - eng
KW - semigroup; weak duality; exit law; semigroup; weak duality; exit law
UR - http://eudml.org/doc/248777
ER -
References
top- Berg C., Forst G., Potential theory on locally compact Abellian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR0481057
- Boboc N., Bucut G., Cornea A., Order and Convexity in Potential Theory, Lecture Notes in Math. 853, Springer, Berlin-Heidelberg-New York, 1980.
- Dellacherie C., Meyer P.A., Probabilités et Potentiel, Chapter , Herman, 1987. Zbl0624.60084MR0488194
- Fitzsimmons P.J., Markov processes and non symmetric Dirichlet forms without regularity, J. Funct. Anal. 85 287-306 (1989). (1989) MR1012207
- Fitzsimmons P.J., Getoor R.K., On the potential theory of symmetric Markov processes, Math. Ann. 281 495-512 (1988). (1988) Zbl0627.60067MR0954155
- Fukushima M., Dirichlet Forms and Markov Processes, North-Holland, Amsterdam-Oxford-New York, 1980. Zbl0422.31007MR0569058
- Getoor R.K., Excessive Measures, Birkhäuser Processes, 1990. Zbl1081.60544MR1093669
- Getoor R.K., Glover J., Riesz decomposition in Markov process theory, Trans. Amer. Math. Soc. 285 107-132 (1989). (1989) MR0748833
- Getoor R.K., Sharpe M.P., Naturality standardness and weak duality for Markov processes, Z. Wahrsch verw. Gebiete 67 1-62 (1984). (1984) Zbl0553.60070MR0756804
- Hmissi M., Lois de sortie et semi-groupes basiques, Manuscripta Math. 75 293-302 (1992). (1992) Zbl0759.60080MR1167135
- Hmissi M., Sur la représentation par les lois de sortie, Math. Z. 213 647-656 (1993). (1993) Zbl0790.31006MR1231882
- Hmissi M., On the functional equation of exit laws for lattice semi-groups, Ann. Ecole Normale Superieure de Cracowie 196 63-72 (1998). (1998) MR1826075
- Janssen K., Representation of excessive measures, Sem. Stoch. Processes Birkhäuser, Boston, Mass., 1987, pp.85-105. Zbl0619.47035MR0902428
- Silverstein M., Symmetric Markov Processes, Lecture Notes in Math. 426, Springer, Berlin-Heidelberg-New York, 1974. Zbl0331.60046MR0386032
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.