Structure of the kernel of higher spin Dirac operators

Martin Plechšmíd

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 665-680
  • ISSN: 0010-2628

Abstract

top
Polynomials on n with values in an irreducible Spin n -module form a natural representation space for the group Spin n . These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on n with values in these modules.

How to cite

top

Plechšmíd, Martin. "Structure of the kernel of higher spin Dirac operators." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 665-680. <http://eudml.org/doc/248778>.

@article{Plechšmíd2001,
abstract = {Polynomials on $\mathbb \{R\}^n$ with values in an irreducible $\operatorname\{Spin\}_n$-module form a natural representation space for the group $\operatorname\{Spin\}_n$. These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on $\mathbb \{R\}^n$ with values in these modules.},
author = {Plechšmíd, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {conformally invariant differential operators; generalized (higher-spin) Dirac operators; representations of spin-groups; Littlewood-Richardson rule; conformally invariant differential operators; higher-spin Dirac operator; Littlewood-Richardson rule},
language = {eng},
number = {4},
pages = {665-680},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Structure of the kernel of higher spin Dirac operators},
url = {http://eudml.org/doc/248778},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Plechšmíd, Martin
TI - Structure of the kernel of higher spin Dirac operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 665
EP - 680
AB - Polynomials on $\mathbb {R}^n$ with values in an irreducible $\operatorname{Spin}_n$-module form a natural representation space for the group $\operatorname{Spin}_n$. These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on $\mathbb {R}^n$ with values in these modules.
LA - eng
KW - conformally invariant differential operators; generalized (higher-spin) Dirac operators; representations of spin-groups; Littlewood-Richardson rule; conformally invariant differential operators; higher-spin Dirac operator; Littlewood-Richardson rule
UR - http://eudml.org/doc/248778
ER -

References

top
  1. Branson T., Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), 334-383. (1997) Zbl0904.58054MR1491546
  2. Bernardes G., Sommen F., Monogenic functions of higher spin by Cauchy-Kowalevska extension of real-analytic functions, Complex Variables Theory Appl. 39 (1999), 4 305-325. (1999) MR1727626
  3. Bureš J., Special invariant operators, Comment. Math. Univ. Carolinae 37 (1996), 1 179-198. (1996) MR1396170
  4. Bureš J., The higher spin Dirac operators, Proc. Conf. Diff. Geometry and its Applications, 1998, pp.319-334. MR1708920
  5. Bureš J., The Rarita-Schwinger equation and spherical monogenic forms, Complex Variables Theory Appl. 43 (2000), 77-108. (2000) MR1809813
  6. Bureš J., Monogenic forms of the polynomial type, 2000, accepted in Proc. Conf. Clifford Anal. and its Appl., Prague, 2000. MR1890434
  7. Bureš J., Souček V., Eigenvalues of conformally invariant operators on spheres, Proc. 18th Winter School Geom. and Phys., Serie II., Suppl. 59, 1999, pp.109-122. MR1692262
  8. Bureš J., Souček V., Sommen F., Van Lancker P., Symmetric analogues of Rarita-Schwinger equations, 2000, accepted in Annals of Global Analysis and Geometry, Kluwer Publ. 
  9. Bureš J., Souček V., Sommen F., Van Lancker P., Rarita-Schwinger type operators in Clifford analysis, 2000, accepted in J. Funct. Analysis. 
  10. Čap A., Slovák J., Souček V., Invariant operators on manifolds with AHS structures, I.,II., Acta Math. Univ. Comenianae 66 (1997), 33-69, 203-220. (1997) 
  11. Fegan H.D., Conformally invariant first order differential operators, Quart. J. Math. 27 (1976), 371-378. (1976) Zbl0334.58016MR0482879
  12. Fulton W., Harris J., Representation Theory, Springer-Verlag, 1991. Zbl0744.22001MR1153249
  13. Homma Y., The higher spin Dirac operators on 3 -dimensional manifolds, preprint arXiv:math.DG/0006210. Zbl1021.53026MR1874992
  14. Homma Y., Spinor-valued and Clifford algebra-valued harmonic polynomials, submitted to Geometry and Physics. Zbl0972.43005
  15. Lawson H.B. jr., Michelson M.L., Spin Geometry, Princeton University Press, 1989. MR1031992
  16. Littelmann P., A generalization of the Littlewood-Richardson rule, J. Algebra 130 (1990), 2 328-368. (1990) Zbl0704.20033MR1051307
  17. Morrey C.B. jr., Nirenberg L., On the analycity of the solutions of linear elliptic systems of PDEs, Com. Pure Appl. Math. 10 (1957), 271-290. (1957) MR0089334
  18. Samelson H., Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, 1969. Zbl0708.17005MR0254112
  19. Severa V., Invariant differential operators on Spinor-valued differential forms, Dissertation, Charles University, Prague, 1998. 
  20. Slovák J., Invariant operators on conformal manifolds, Research Lecture Notes, University of Vienna, 1992. 
  21. Slovák J., Parabolic Geometries, DrSc Dissertation, Masaryk University Brno, 1998. 
  22. Plechšmíd M., Polynomial solutions for a class of higher spin equations, Dissertation, Charles University, Prague, 2001. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.