Structure of the kernel of higher spin Dirac operators
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 4, page 665-680
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPlechšmíd, Martin. "Structure of the kernel of higher spin Dirac operators." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 665-680. <http://eudml.org/doc/248778>.
@article{Plechšmíd2001,
abstract = {Polynomials on $\mathbb \{R\}^n$ with values in an irreducible $\operatorname\{Spin\}_n$-module form a natural representation space for the group $\operatorname\{Spin\}_n$. These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on $\mathbb \{R\}^n$ with values in these modules.},
author = {Plechšmíd, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {conformally invariant differential operators; generalized (higher-spin) Dirac operators; representations of spin-groups; Littlewood-Richardson rule; conformally invariant differential operators; higher-spin Dirac operator; Littlewood-Richardson rule},
language = {eng},
number = {4},
pages = {665-680},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Structure of the kernel of higher spin Dirac operators},
url = {http://eudml.org/doc/248778},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Plechšmíd, Martin
TI - Structure of the kernel of higher spin Dirac operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 665
EP - 680
AB - Polynomials on $\mathbb {R}^n$ with values in an irreducible $\operatorname{Spin}_n$-module form a natural representation space for the group $\operatorname{Spin}_n$. These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on $\mathbb {R}^n$ with values in these modules.
LA - eng
KW - conformally invariant differential operators; generalized (higher-spin) Dirac operators; representations of spin-groups; Littlewood-Richardson rule; conformally invariant differential operators; higher-spin Dirac operator; Littlewood-Richardson rule
UR - http://eudml.org/doc/248778
ER -
References
top- Branson T., Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), 334-383. (1997) Zbl0904.58054MR1491546
- Bernardes G., Sommen F., Monogenic functions of higher spin by Cauchy-Kowalevska extension of real-analytic functions, Complex Variables Theory Appl. 39 (1999), 4 305-325. (1999) MR1727626
- Bureš J., Special invariant operators, Comment. Math. Univ. Carolinae 37 (1996), 1 179-198. (1996) MR1396170
- Bureš J., The higher spin Dirac operators, Proc. Conf. Diff. Geometry and its Applications, 1998, pp.319-334. MR1708920
- Bureš J., The Rarita-Schwinger equation and spherical monogenic forms, Complex Variables Theory Appl. 43 (2000), 77-108. (2000) MR1809813
- Bureš J., Monogenic forms of the polynomial type, 2000, accepted in Proc. Conf. Clifford Anal. and its Appl., Prague, 2000. MR1890434
- Bureš J., Souček V., Eigenvalues of conformally invariant operators on spheres, Proc. 18th Winter School Geom. and Phys., Serie II., Suppl. 59, 1999, pp.109-122. MR1692262
- Bureš J., Souček V., Sommen F., Van Lancker P., Symmetric analogues of Rarita-Schwinger equations, 2000, accepted in Annals of Global Analysis and Geometry, Kluwer Publ.
- Bureš J., Souček V., Sommen F., Van Lancker P., Rarita-Schwinger type operators in Clifford analysis, 2000, accepted in J. Funct. Analysis.
- Čap A., Slovák J., Souček V., Invariant operators on manifolds with AHS structures, I.,II., Acta Math. Univ. Comenianae 66 (1997), 33-69, 203-220. (1997)
- Fegan H.D., Conformally invariant first order differential operators, Quart. J. Math. 27 (1976), 371-378. (1976) Zbl0334.58016MR0482879
- Fulton W., Harris J., Representation Theory, Springer-Verlag, 1991. Zbl0744.22001MR1153249
- Homma Y., The higher spin Dirac operators on -dimensional manifolds, preprint arXiv:math.DG/0006210. Zbl1021.53026MR1874992
- Homma Y., Spinor-valued and Clifford algebra-valued harmonic polynomials, submitted to Geometry and Physics. Zbl0972.43005
- Lawson H.B. jr., Michelson M.L., Spin Geometry, Princeton University Press, 1989. MR1031992
- Littelmann P., A generalization of the Littlewood-Richardson rule, J. Algebra 130 (1990), 2 328-368. (1990) Zbl0704.20033MR1051307
- Morrey C.B. jr., Nirenberg L., On the analycity of the solutions of linear elliptic systems of PDEs, Com. Pure Appl. Math. 10 (1957), 271-290. (1957) MR0089334
- Samelson H., Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, 1969. Zbl0708.17005MR0254112
- Severa V., Invariant differential operators on Spinor-valued differential forms, Dissertation, Charles University, Prague, 1998.
- Slovák J., Invariant operators on conformal manifolds, Research Lecture Notes, University of Vienna, 1992.
- Slovák J., Parabolic Geometries, DrSc Dissertation, Masaryk University Brno, 1998.
- Plechšmíd M., Polynomial solutions for a class of higher spin equations, Dissertation, Charles University, Prague, 2001.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.