The fixed point property in Musielak-Orlicz sequence spaces

Harold Bevan Thompson; Yunan Cui

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 2, page 299-309
  • ISSN: 0010-2628

Abstract

top
In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space equipped with the Orlicz norm has the fixed point property if and only if it is reflexive.

How to cite

top

Thompson, Harold Bevan, and Cui, Yunan. "The fixed point property in Musielak-Orlicz sequence spaces." Commentationes Mathematicae Universitatis Carolinae 42.2 (2001): 299-309. <http://eudml.org/doc/248783>.

@article{Thompson2001,
abstract = {In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space equipped with the Orlicz norm has the fixed point property if and only if it is reflexive.},
author = {Thompson, Harold Bevan, Cui, Yunan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nearly uniformly convex; uniform Kadec-Klee property; Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property; uniform convexity; uniform Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property},
language = {eng},
number = {2},
pages = {299-309},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The fixed point property in Musielak-Orlicz sequence spaces},
url = {http://eudml.org/doc/248783},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Thompson, Harold Bevan
AU - Cui, Yunan
TI - The fixed point property in Musielak-Orlicz sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 2
SP - 299
EP - 309
AB - In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space equipped with the Orlicz norm has the fixed point property if and only if it is reflexive.
LA - eng
KW - nearly uniformly convex; uniform Kadec-Klee property; Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property; uniform convexity; uniform Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property
UR - http://eudml.org/doc/248783
ER -

References

top
  1. Chen S., Geometry of Orlicz spaces, Dissertation Math., Warsaw, 1996. Zbl1089.46500MR1410390
  2. Cui Y.A., Hudzik H., Maluta coefficient and Opial property in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Nonlinear Anal. Theory Methods & Appl., to appear. MR1656529
  3. Cui Y.A., Hudzik H., Nowak M., Pluciennik R., Some geometric properties in Orlicz sequence spaces equipped with the Orlicz norm, J. Convex Anal. 6 (1999), 91-113. (1999) MR1713953
  4. Denker M., Hudzik H., Uniformly non- l n ( 1 ) Musielak-Orlicz sequence spaces, Proc. Indian. Acad. Sci. 101.2 (1991), 71-86. (1991) MR1125480
  5. Diestel J., Sequence and Series in Banach Spaces, Graduate Texts in Math. 92, Springer-Verlag, 1984. MR0737004
  6. Dowling P.R., Lennard C.J., Turett B., Reflexivity and the fixed-point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653-662. (1996) Zbl0863.47038MR1393106
  7. Dulst D., Sims B., Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), Banach Space Theory and its Applications (Bucharest, 1981), pp.35-43; Lecture Notes in Math. 991, Springer, Berlin-New York, 1983. Zbl0512.46015MR0714171
  8. Goebel K., Sekowski T., The modulus of non-compact convexity, Ann. Univ. Maria Curie-Sklodowska, Sect. A 38 (1984), 41-48. (1984) MR0856623
  9. Goebel R., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. MR1074005
  10. Hudzik H., Kaminska A., Some remarks on convergence in Orlicz spaces, Comment. Math. 21 (1979), 81-88. (1979) MR0577673
  11. Hudzik H., Ye Y., Support functionals and smoothness in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Comment. Math. Univ. Carolinae 31.4 (1990), 661-684. (1990) MR1091364
  12. Huff R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 473-749. (1980) Zbl0505.46011MR0595102
  13. Kadec M.I., Relations between some properties of convexity of the ball of a Banach spaces, Functional Anal. Appl. 16 (1982), 93-100. (1982) 
  14. Kaminska A., Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47.4 (1986), 302-322. (1986) Zbl0606.46003MR0862227
  15. Kaminska A., Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 30 (1982), 347-352. (1982) Zbl0513.46008MR0707748
  16. Kantorovic L.V., Akilov G.P., Functional Analysis (in Russian), 2nd edition, Moscow, 1978. MR0511615
  17. Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, Berlin, 1983. Zbl0557.46020MR0724434
  18. Pluciennik R., Wang T., Zhang Y., H-point and denting points in Orlicz spaces, Comment. Math. 33 (1993), 135-151. (1993) MR1269408
  19. Rao M.M., Ren Z.D., Theory of Orlicz spaces, Marcel Dekker Inc., New York, Basel, HongKong, 1991. Zbl0724.46032MR1113700
  20. Wu Congxin, Sun Huiying, Norm calculations and complex rotundity of Musielak-Orlicz sequence spaces, Chinese Math. Ann. 12A (Special Issue) 98-102. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.