The fixed point property in Musielak-Orlicz sequence spaces
Harold Bevan Thompson; Yunan Cui
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 2, page 299-309
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topThompson, Harold Bevan, and Cui, Yunan. "The fixed point property in Musielak-Orlicz sequence spaces." Commentationes Mathematicae Universitatis Carolinae 42.2 (2001): 299-309. <http://eudml.org/doc/248783>.
@article{Thompson2001,
abstract = {In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space equipped with the Orlicz norm has the fixed point property if and only if it is reflexive.},
author = {Thompson, Harold Bevan, Cui, Yunan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nearly uniformly convex; uniform Kadec-Klee property; Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property; uniform convexity; uniform Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property},
language = {eng},
number = {2},
pages = {299-309},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The fixed point property in Musielak-Orlicz sequence spaces},
url = {http://eudml.org/doc/248783},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Thompson, Harold Bevan
AU - Cui, Yunan
TI - The fixed point property in Musielak-Orlicz sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 2
SP - 299
EP - 309
AB - In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an H-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the Kadec-Klee property, the uniform Kadec-Klee property and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space equipped with the Orlicz norm has the fixed point property if and only if it is reflexive.
LA - eng
KW - nearly uniformly convex; uniform Kadec-Klee property; Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property; uniform convexity; uniform Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property
UR - http://eudml.org/doc/248783
ER -
References
top- Chen S., Geometry of Orlicz spaces, Dissertation Math., Warsaw, 1996. Zbl1089.46500MR1410390
- Cui Y.A., Hudzik H., Maluta coefficient and Opial property in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Nonlinear Anal. Theory Methods & Appl., to appear. MR1656529
- Cui Y.A., Hudzik H., Nowak M., Pluciennik R., Some geometric properties in Orlicz sequence spaces equipped with the Orlicz norm, J. Convex Anal. 6 (1999), 91-113. (1999) MR1713953
- Denker M., Hudzik H., Uniformly non- Musielak-Orlicz sequence spaces, Proc. Indian. Acad. Sci. 101.2 (1991), 71-86. (1991) MR1125480
- Diestel J., Sequence and Series in Banach Spaces, Graduate Texts in Math. 92, Springer-Verlag, 1984. MR0737004
- Dowling P.R., Lennard C.J., Turett B., Reflexivity and the fixed-point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653-662. (1996) Zbl0863.47038MR1393106
- Dulst D., Sims B., Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), Banach Space Theory and its Applications (Bucharest, 1981), pp.35-43; Lecture Notes in Math. 991, Springer, Berlin-New York, 1983. Zbl0512.46015MR0714171
- Goebel K., Sekowski T., The modulus of non-compact convexity, Ann. Univ. Maria Curie-Sklodowska, Sect. A 38 (1984), 41-48. (1984) MR0856623
- Goebel R., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. MR1074005
- Hudzik H., Kaminska A., Some remarks on convergence in Orlicz spaces, Comment. Math. 21 (1979), 81-88. (1979) MR0577673
- Hudzik H., Ye Y., Support functionals and smoothness in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, Comment. Math. Univ. Carolinae 31.4 (1990), 661-684. (1990) MR1091364
- Huff R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 473-749. (1980) Zbl0505.46011MR0595102
- Kadec M.I., Relations between some properties of convexity of the ball of a Banach spaces, Functional Anal. Appl. 16 (1982), 93-100. (1982)
- Kaminska A., Uniform rotundity of Musielak-Orlicz sequence spaces, J. Approx. Theory 47.4 (1986), 302-322. (1986) Zbl0606.46003MR0862227
- Kaminska A., Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 30 (1982), 347-352. (1982) Zbl0513.46008MR0707748
- Kantorovic L.V., Akilov G.P., Functional Analysis (in Russian), 2nd edition, Moscow, 1978. MR0511615
- Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, Berlin, 1983. Zbl0557.46020MR0724434
- Pluciennik R., Wang T., Zhang Y., H-point and denting points in Orlicz spaces, Comment. Math. 33 (1993), 135-151. (1993) MR1269408
- Rao M.M., Ren Z.D., Theory of Orlicz spaces, Marcel Dekker Inc., New York, Basel, HongKong, 1991. Zbl0724.46032MR1113700
- Wu Congxin, Sun Huiying, Norm calculations and complex rotundity of Musielak-Orlicz sequence spaces, Chinese Math. Ann. 12A (Special Issue) 98-102.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.