Almost * realcompactness

John J. Schommer; Mary Anne Swardson

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 2, page 385-394
  • ISSN: 0010-2628

Abstract

top
We provide a new generalization of realcompactness based on ultrafilters of cozero sets and contrast it with almost realcompactness.

How to cite

top

Schommer, John J., and Swardson, Mary Anne. "Almost$^*$ realcompactness." Commentationes Mathematicae Universitatis Carolinae 42.2 (2001): 385-394. <http://eudml.org/doc/248785>.

@article{Schommer2001,
abstract = {We provide a new generalization of realcompactness based on ultrafilters of cozero sets and contrast it with almost realcompactness.},
author = {Schommer, John J., Swardson, Mary Anne},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {almost realcompact; almost$^*$ realcompact; almost weak Oz; super countably paracompact; rc=s; almost realcompact; almost weak Oz; super countably paracompact},
language = {eng},
number = {2},
pages = {385-394},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Almost$^*$ realcompactness},
url = {http://eudml.org/doc/248785},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Schommer, John J.
AU - Swardson, Mary Anne
TI - Almost$^*$ realcompactness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 2
SP - 385
EP - 394
AB - We provide a new generalization of realcompactness based on ultrafilters of cozero sets and contrast it with almost realcompactness.
LA - eng
KW - almost realcompact; almost$^*$ realcompact; almost weak Oz; super countably paracompact; rc=s; almost realcompact; almost weak Oz; super countably paracompact
UR - http://eudml.org/doc/248785
ER -

References

top
  1. Chigogidze A., On a generalization of perfectly normal spaces, Topology Appl. 13 (1982), 15-20. (1982) Zbl0486.54013MR0637423
  2. Dow A., van Mill J., An extremally disconnected Dowker space, Proc. Amer. Math. Soc. 86 (1982), 669-672. (1982) Zbl0502.54043MR0674103
  3. Dykes N., Mappings and realcompact spaces, Pacific J. Math. 31 (1969), 347-358. (1969) Zbl0185.26402MR0263039
  4. Dykes N., Generalizations of realcompact spaces, Pacific J. Math. 33 (1970), 571-581. (1970) Zbl0197.19201MR0276928
  5. Engelking R., General Topology, Heldermann Verlag Berlin (1989). (1989) Zbl0684.54001MR1039321
  6. Frolík Z., A generalization of realcompact spaces, Czech. Math. J. 13 (1963), 127-138. (1963) MR0155289
  7. Frolík Z., Prime filters with CIP, Comment. Math. Univ. Carolinae 13.3 (1972), 553-575. (1972) MR0315648
  8. Gillman L., Jerison M., Rings of Continuous Functions, University Series in Higher Math. Van Nostrand Princeton New Jersey (1960). (1960) Zbl0093.30001MR0116199
  9. Henriksen M., Jerison M., The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (3) (1965), 110-130. (1965) Zbl0147.29105MR0194880
  10. Mandelker M., Supports of continuous functions, Trans. Amer. Math. Soc. 156 (1971), 73-83. (1971) Zbl0197.48703MR0275367
  11. Mysior A., A union of realcompact spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. XXIX (3-4) (1981), 169-172. (1981) Zbl0469.54011MR0638760
  12. Porter J., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag New York, Heidelberg, Berlin (1988). (1988) Zbl0652.54016MR0918341
  13. Schommer J., A characterization of realcompactness, Acta Mathematica Hungarica 72 (4) (1996), 319-322. (1996) Zbl0860.54025MR1406400
  14. van der Slot J., Some Properties Related to Compactness, Mathematisch Centrum (1976), Amsterdam Mathematical Centre Tracts 19. (1976) MR0247607
  15. Weir M., Hewitt-Nachbin Spaces, North Holland Math. Studies American Elsevier New York (1975). (1975) Zbl0314.54002MR0514909

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.