For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 1, page 153-158
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVeselý, Libor. "For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 153-158. <http://eudml.org/doc/248805>.
@article{Veselý2001,
abstract = {Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot |$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot |)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.},
author = {Veselý, Libor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {renormings; non-reflexive Banach spaces; Chebyshev centers; Chebyshev center; nonreflexive Banach space; renorming; uniform approximation},
language = {eng},
number = {1},
pages = {153-158},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center},
url = {http://eudml.org/doc/248805},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Veselý, Libor
TI - For a dense set of equivalent norms, a non-reflexive Banach space contains a triangle with no Chebyshev center
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 153
EP - 158
AB - Let $X$ be a non-reflexive real Banach space. Then for each norm $|\cdot |$ from a dense set of equivalent norms on $X$ (in the metric of uniform convergence on the unit ball of $X$), there exists a three-point set that has no Chebyshev center in $(X,|\cdot |)$. This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.
LA - eng
KW - renormings; non-reflexive Banach spaces; Chebyshev centers; Chebyshev center; nonreflexive Banach space; renorming; uniform approximation
UR - http://eudml.org/doc/248805
ER -
References
top- Davis W.J., Johnson W.B., A renorming of non-reflexive Banach spaces, Israel J. Math. 14 (1973), 353-367. (1973) MR0322481
- van Dulst D., Singer I., On Kadec-Klee norms on Banach spaces, Studia Math. 54 (1976), 205-211. (1976) Zbl0321.46012MR0394132
- Holmes R.B., A course in optimization and best approximation, Lecture Notes in Mathematics 257, Springer-Verlag, 1972. MR0420367
- James R.C., Reflexivity and the supremum of linear functionals, Ann. Math. 66 (1957), 159-169. (1957) Zbl0079.12704MR0090019
- Konyagin S.V., A remark on renormings of nonreflexive spaces and the existence of a Chebyshev center, Moscow Univ. Math. Bull. 43 2 (1988), 55-56. (1988) MR0938075
- Veselý L., A geometric proof of a theorem about non-dual renormings, Proc. Amer. Math. Soc. 127 (1999), 2807-2809. (1999) MR1670431
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.