The lattice copies of 1 in Banach lattices

Marek Wójtowicz

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 649-653
  • ISSN: 0010-2628

Abstract

top
It is known that a Banach lattice with order continuous norm contains a copy of 1 if and only if it contains a lattice copy of 1 . The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the c 0 - and -cases considered by Lozanovskii, Mekler and Meyer-Nieberg.

How to cite

top

Wójtowicz, Marek. "The lattice copies of $\ell _1$ in Banach lattices." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 649-653. <http://eudml.org/doc/248806>.

@article{Wójtowicz2001,
abstract = {It is known that a Banach lattice with order continuous norm contains a copy of $\ell _1$ if and only if it contains a lattice copy of $\ell _1$. The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the $c_0$- and $\ell _\{\infty \}$-cases considered by Lozanovskii, Mekler and Meyer-Nieberg.},
author = {Wójtowicz, Marek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach lattice; order continuous norm; embedding of $\ell _1$; Banach lattice; order continuous norm; embedding of },
language = {eng},
number = {4},
pages = {649-653},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The lattice copies of $\ell _1$ in Banach lattices},
url = {http://eudml.org/doc/248806},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Wójtowicz, Marek
TI - The lattice copies of $\ell _1$ in Banach lattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 649
EP - 653
AB - It is known that a Banach lattice with order continuous norm contains a copy of $\ell _1$ if and only if it contains a lattice copy of $\ell _1$. The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the $c_0$- and $\ell _{\infty }$-cases considered by Lozanovskii, Mekler and Meyer-Nieberg.
LA - eng
KW - Banach lattice; order continuous norm; embedding of $\ell _1$; Banach lattice; order continuous norm; embedding of
UR - http://eudml.org/doc/248806
ER -

References

top
  1. Abramovich Y.A., Lozanovskii G.Ya., On some numerical characterizations of KN-lineals (Russian), Mat. Zametki 14 (1973), 723-732; Transl.: Math. Notes 14 (1973), 973-978. (1973) MR0338727
  2. Abramovich Y.A., Wickstead A.W., Remarkable classes of unital AM-spaces, J. Math. Anal. Appl. 180 (1993), 398-411. (1993) Zbl0792.46004MR1251867
  3. Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985. Zbl1098.47001MR0809372
  4. Diaz J.C., On a three-space problem: noncontainment of p , 1 p < , or c 0 -subspaces, Publ. Mat. (Barcelona) 37 (1993), 127-132. (1993) MR1240928
  5. Diestel J., A survey of results related to the Dunford-Pettis property, Contemporary Math. 2 (1980), 15-60. (1980) Zbl0571.46013MR0621850
  6. Drewnowski L., Labuda I., Copies of c 0 and in topological Riesz spaces, Trans. Amer. Math. Soc. 350 (1998), 3555-3570. (1998) Zbl0903.46010MR1466947
  7. Kühn B., Banachverbände mit ordungsstetiger Dualnorm, Math. Z. 167 (1979), 271-277. (1979) MR0539109
  8. Lindenstrauss J., Weakly compact sets - their topological properties and the Banach spaces they generate, Proc. Symp. Infinite Dim. Topology 1967, Annals Math. Studies, Princeton Univ. Press, 1972. Zbl0232.46019MR0417761
  9. Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0362.46013MR0500056
  10. Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Function Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0403.46022MR0540367
  11. Lozanovskii G.Ya., On one result of Shimogaki (in Russian), Theses of Second Conference of the Pedagogical Institutes of Nord-West Region Devoted to Mathematics and Methods of its Teaching, Leningrad, 1970, 43. 
  12. Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin-Heidelberg-New York, 1991. Zbl0743.46015MR1128093
  13. de Pagter B., Wnuk W., Some remarks on Banach lattices with non-atomic duals, Indag. Math. (N.S.) 1 (1990), 391-395. (1990) Zbl0731.46008MR1075887
  14. Polyrakis I., Lattice-subspaces of C [ 0 , 1 ] and positive bases, J. Math. Anal. Appl. 184 (1994), 1-18. (1994) Zbl0802.46035MR1275938
  15. Wnuk W., Locally solid Riesz spaces not containing c 0 , Bull. Polish Acad. Sci. Math. 36 (1988), 51-55. (1988) MR0998207
  16. Wnuk W., Banach Lattices with Order Continuous Norm, Polish Scientific Publishers, Warszawa, 1999. 
  17. Wójtowicz M., The Sobczyk property and copies of in locally convex-solid Riesz spaces, Arch. Math. 75 (2000), 376-379. (2000) MR1785446

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.