The lattice copies of in Banach lattices
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 4, page 649-653
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topWójtowicz, Marek. "The lattice copies of $\ell _1$ in Banach lattices." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 649-653. <http://eudml.org/doc/248806>.
@article{Wójtowicz2001,
abstract = {It is known that a Banach lattice with order continuous norm contains a copy of $\ell _1$ if and only if it contains a lattice copy of $\ell _1$. The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the $c_0$- and $\ell _\{\infty \}$-cases considered by Lozanovskii, Mekler and Meyer-Nieberg.},
author = {Wójtowicz, Marek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach lattice; order continuous norm; embedding of $\ell _1$; Banach lattice; order continuous norm; embedding of },
language = {eng},
number = {4},
pages = {649-653},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The lattice copies of $\ell _1$ in Banach lattices},
url = {http://eudml.org/doc/248806},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Wójtowicz, Marek
TI - The lattice copies of $\ell _1$ in Banach lattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 649
EP - 653
AB - It is known that a Banach lattice with order continuous norm contains a copy of $\ell _1$ if and only if it contains a lattice copy of $\ell _1$. The purpose of this note is to present a more direct proof of this useful fact, which extends a similar theorem due to R.C. James for Banach spaces with unconditional bases, and complements the $c_0$- and $\ell _{\infty }$-cases considered by Lozanovskii, Mekler and Meyer-Nieberg.
LA - eng
KW - Banach lattice; order continuous norm; embedding of $\ell _1$; Banach lattice; order continuous norm; embedding of
UR - http://eudml.org/doc/248806
ER -
References
top- Abramovich Y.A., Lozanovskii G.Ya., On some numerical characterizations of KN-lineals (Russian), Mat. Zametki 14 (1973), 723-732; Transl.: Math. Notes 14 (1973), 973-978. (1973) MR0338727
- Abramovich Y.A., Wickstead A.W., Remarkable classes of unital AM-spaces, J. Math. Anal. Appl. 180 (1993), 398-411. (1993) Zbl0792.46004MR1251867
- Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985. Zbl1098.47001MR0809372
- Diaz J.C., On a three-space problem: noncontainment of , , or -subspaces, Publ. Mat. (Barcelona) 37 (1993), 127-132. (1993) MR1240928
- Diestel J., A survey of results related to the Dunford-Pettis property, Contemporary Math. 2 (1980), 15-60. (1980) Zbl0571.46013MR0621850
- Drewnowski L., Labuda I., Copies of and in topological Riesz spaces, Trans. Amer. Math. Soc. 350 (1998), 3555-3570. (1998) Zbl0903.46010MR1466947
- Kühn B., Banachverbände mit ordungsstetiger Dualnorm, Math. Z. 167 (1979), 271-277. (1979) MR0539109
- Lindenstrauss J., Weakly compact sets - their topological properties and the Banach spaces they generate, Proc. Symp. Infinite Dim. Topology 1967, Annals Math. Studies, Princeton Univ. Press, 1972. Zbl0232.46019MR0417761
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0362.46013MR0500056
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Function Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0403.46022MR0540367
- Lozanovskii G.Ya., On one result of Shimogaki (in Russian), Theses of Second Conference of the Pedagogical Institutes of Nord-West Region Devoted to Mathematics and Methods of its Teaching, Leningrad, 1970, 43.
- Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin-Heidelberg-New York, 1991. Zbl0743.46015MR1128093
- de Pagter B., Wnuk W., Some remarks on Banach lattices with non-atomic duals, Indag. Math. (N.S.) 1 (1990), 391-395. (1990) Zbl0731.46008MR1075887
- Polyrakis I., Lattice-subspaces of and positive bases, J. Math. Anal. Appl. 184 (1994), 1-18. (1994) Zbl0802.46035MR1275938
- Wnuk W., Locally solid Riesz spaces not containing , Bull. Polish Acad. Sci. Math. 36 (1988), 51-55. (1988) MR0998207
- Wnuk W., Banach Lattices with Order Continuous Norm, Polish Scientific Publishers, Warszawa, 1999.
- Wójtowicz M., The Sobczyk property and copies of in locally convex-solid Riesz spaces, Arch. Math. 75 (2000), 376-379. (2000) MR1785446
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.