Integrability for vector-valued minimizers of some variational integrals
Francesco Leonetti; Francesco Siepe
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 3, page 469-479
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLeonetti, Francesco, and Siepe, Francesco. "Integrability for vector-valued minimizers of some variational integrals." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 469-479. <http://eudml.org/doc/248821>.
@article{Leonetti2001,
abstract = {We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\mathcal \{F\}$, whose model is \[ \int \_\{\Omega \} \left[|Du|^p + (\operatorname\{det\} (Du))^2 - \langle f,Du \rangle + \langle f\_0,u \rangle \right] dx, \]
where $u:\Omega \subset \mathbb \{R\}^n\rightarrow \mathbb \{R\}^n$ and $p\ge 2$.},
author = {Leonetti, Francesco, Siepe, Francesco},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {calculus of variations; minimizers; regularity; multidimensional vectorial variational problem; minimizers; regularity },
language = {eng},
number = {3},
pages = {469-479},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Integrability for vector-valued minimizers of some variational integrals},
url = {http://eudml.org/doc/248821},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Leonetti, Francesco
AU - Siepe, Francesco
TI - Integrability for vector-valued minimizers of some variational integrals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 469
EP - 479
AB - We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\mathcal {F}$, whose model is \[ \int _{\Omega } \left[|Du|^p + (\operatorname{det} (Du))^2 - \langle f,Du \rangle + \langle f_0,u \rangle \right] dx, \]
where $u:\Omega \subset \mathbb {R}^n\rightarrow \mathbb {R}^n$ and $p\ge 2$.
LA - eng
KW - calculus of variations; minimizers; regularity; multidimensional vectorial variational problem; minimizers; regularity
UR - http://eudml.org/doc/248821
ER -
References
top- Boccardo L., Giachetti D., Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni, Ricerche Mat. XXXIV (1985), 309-323. (1985) MR0870828
- Boccardo L., Schianchi R., A remark on the -regularity of the minima of functionals of the calculus of variations, Rev. Mat. Univ. Complut. Madrid 2 (1989), 113-118. (1989) MR1012107
- Campanato S., Sistemi ellittici in forma di divergenza, Quaderni Scuola Norm. Sup. Pisa, 1980. MR0668196
- De Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. 4 (1968), 135-137. (1968) MR0227827
- D'Ottavio A., Leonetti F., Musciano C., Maximum principle for vector-valued mappings minimizing variational integrals, Atti Sem. Mat. Fis. Univ. Modena, suppl. vol. XLVI (1998), 677-683. (1998) Zbl0913.35026MR1645746
- Fusco N., Hutchinson J., Partial regularity and everywhere continuity for a model problem from non-linear elasticity, J. Austral. Math. Soc. (Series A) 57 (1994), 158-169. (1994) MR1288671
- Giachetti D., Porzio M.M., Local regularity results for minima of functionals of the calculus of variations, Nonlinear Anal. TMA 39 (2000), 463-482. (2000) MR1725398
- Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton Univ. Press, 1983. Zbl0516.49003MR0717034
- Giusti E., Metodi diretti nel calcolo delle variazioni, U.M.I., 1994. Zbl0942.49002MR1707291
- Kufner A., John O., Fučik S., Function Spaces, Noordhoff International Publishing, Leyden, 1977. MR0482102
- Leonetti F., Maximum principle for vector-valued minimizers of some integral functionals, Boll. Un. Mat. Ital. 7 (1991), 51-56. (1991) Zbl0729.49015MR1101010
- Leonetti F., Maximum principle for functionals depending on minors of the jacobian matrix of vector-valued mappings, Australian Nat. Univ., Centre for Math. Anal., Research Report 20, 1990.
- Nečas J., Stará J., Principio di massimo per i sistemi ellittici quasi lineari non diagonali, Boll. Un. Mat. Ital. 6 (1972), 1-10. (1972) MR0315281
- Stampacchia G., Equations elliptiques du second ordre à coefficientes discontinus, Semin. de Math. Supérieures, Univ. de Montréal 16 (1966). (1966) MR0251373
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.