Integrability for vector-valued minimizers of some variational integrals

Francesco Leonetti; Francesco Siepe

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 3, page 469-479
  • ISSN: 0010-2628

Abstract

top
We prove that the higher integrability of the data f , f 0 improves on the integrability of minimizers u of functionals , whose model is Ω | D u | p + ( det ( D u ) ) 2 - f , D u + f 0 , u d x , where u : Ω n n and p 2 .

How to cite

top

Leonetti, Francesco, and Siepe, Francesco. "Integrability for vector-valued minimizers of some variational integrals." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 469-479. <http://eudml.org/doc/248821>.

@article{Leonetti2001,
abstract = {We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\mathcal \{F\}$, whose model is \[ \int \_\{\Omega \} \left[|Du|^p + (\operatorname\{det\} (Du))^2 - \langle f,Du \rangle + \langle f\_0,u \rangle \right] dx, \] where $u:\Omega \subset \mathbb \{R\}^n\rightarrow \mathbb \{R\}^n$ and $p\ge 2$.},
author = {Leonetti, Francesco, Siepe, Francesco},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {calculus of variations; minimizers; regularity; multidimensional vectorial variational problem; minimizers; regularity },
language = {eng},
number = {3},
pages = {469-479},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Integrability for vector-valued minimizers of some variational integrals},
url = {http://eudml.org/doc/248821},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Leonetti, Francesco
AU - Siepe, Francesco
TI - Integrability for vector-valued minimizers of some variational integrals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 469
EP - 479
AB - We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\mathcal {F}$, whose model is \[ \int _{\Omega } \left[|Du|^p + (\operatorname{det} (Du))^2 - \langle f,Du \rangle + \langle f_0,u \rangle \right] dx, \] where $u:\Omega \subset \mathbb {R}^n\rightarrow \mathbb {R}^n$ and $p\ge 2$.
LA - eng
KW - calculus of variations; minimizers; regularity; multidimensional vectorial variational problem; minimizers; regularity
UR - http://eudml.org/doc/248821
ER -

References

top
  1. Boccardo L., Giachetti D., Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni, Ricerche Mat. XXXIV (1985), 309-323. (1985) MR0870828
  2. Boccardo L., Schianchi R., A remark on the L s -regularity of the minima of functionals of the calculus of variations, Rev. Mat. Univ. Complut. Madrid 2 (1989), 113-118. (1989) MR1012107
  3. Campanato S., Sistemi ellittici in forma di divergenza, Quaderni Scuola Norm. Sup. Pisa, 1980. MR0668196
  4. De Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. 4 (1968), 135-137. (1968) MR0227827
  5. D'Ottavio A., Leonetti F., Musciano C., Maximum principle for vector-valued mappings minimizing variational integrals, Atti Sem. Mat. Fis. Univ. Modena, suppl. vol. XLVI (1998), 677-683. (1998) Zbl0913.35026MR1645746
  6. Fusco N., Hutchinson J., Partial regularity and everywhere continuity for a model problem from non-linear elasticity, J. Austral. Math. Soc. (Series A) 57 (1994), 158-169. (1994) MR1288671
  7. Giachetti D., Porzio M.M., Local regularity results for minima of functionals of the calculus of variations, Nonlinear Anal. TMA 39 (2000), 463-482. (2000) MR1725398
  8. Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton Univ. Press, 1983. Zbl0516.49003MR0717034
  9. Giusti E., Metodi diretti nel calcolo delle variazioni, U.M.I., 1994. Zbl0942.49002MR1707291
  10. Kufner A., John O., Fučik S., Function Spaces, Noordhoff International Publishing, Leyden, 1977. MR0482102
  11. Leonetti F., Maximum principle for vector-valued minimizers of some integral functionals, Boll. Un. Mat. Ital. 7 (1991), 51-56. (1991) Zbl0729.49015MR1101010
  12. Leonetti F., Maximum principle for functionals depending on minors of the jacobian matrix of vector-valued mappings, Australian Nat. Univ., Centre for Math. Anal., Research Report 20, 1990. 
  13. Nečas J., Stará J., Principio di massimo per i sistemi ellittici quasi lineari non diagonali, Boll. Un. Mat. Ital. 6 (1972), 1-10. (1972) MR0315281
  14. Stampacchia G., Equations elliptiques du second ordre à coefficientes discontinus, Semin. de Math. Supérieures, Univ. de Montréal 16 (1966). (1966) MR0251373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.