Water-wave problem for a vertical shell
Nikolai G. Kuznecov; Vladimir G. Maz'ya
Mathematica Bohemica (2001)
- Volume: 126, Issue: 2, page 411-420
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKuznecov, Nikolai G., and Maz'ya, Vladimir G.. "Water-wave problem for a vertical shell." Mathematica Bohemica 126.2 (2001): 411-420. <http://eudml.org/doc/248858>.
@article{Kuznecov2001,
abstract = {The uniqueness theorem is proved for the linearized problem describing radiation and scattering of time-harmonic water waves by a vertical shell having an arbitrary horizontal cross-section. The uniqueness holds for all frequencies, and various locations of the shell are possible: surface-piercing, totally immersed and bottom-standing. A version of integral equation technique is outlined for finding a solution.},
author = {Kuznecov, Nikolai G., Maz'ya, Vladimir G.},
journal = {Mathematica Bohemica},
keywords = {time-harmonic velocity potential; uniqueness theorem; Helmholtz equation; Neumann’s eigenvalue problem for Laplacian; integral equation method; weighted Hölder spaces; velocity potential; uniqueness; Neumann’s eigenvalue problem; Laplacian; linearized problem; radiation; scattering; time-harmonic water wave; vertical shell; velocity potential; uniqueness; Helmholtz equation; Neumann's eigenvalue problem; integral equation method; weighted Hölder spaces; Laplacian; linearized problem; radiation; scattering; time-harmonic water wave; vertical shell},
language = {eng},
number = {2},
pages = {411-420},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Water-wave problem for a vertical shell},
url = {http://eudml.org/doc/248858},
volume = {126},
year = {2001},
}
TY - JOUR
AU - Kuznecov, Nikolai G.
AU - Maz'ya, Vladimir G.
TI - Water-wave problem for a vertical shell
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 2
SP - 411
EP - 420
AB - The uniqueness theorem is proved for the linearized problem describing radiation and scattering of time-harmonic water waves by a vertical shell having an arbitrary horizontal cross-section. The uniqueness holds for all frequencies, and various locations of the shell are possible: surface-piercing, totally immersed and bottom-standing. A version of integral equation technique is outlined for finding a solution.
LA - eng
KW - time-harmonic velocity potential; uniqueness theorem; Helmholtz equation; Neumann’s eigenvalue problem for Laplacian; integral equation method; weighted Hölder spaces; velocity potential; uniqueness; Neumann’s eigenvalue problem; Laplacian; linearized problem; radiation; scattering; time-harmonic water wave; vertical shell; velocity potential; uniqueness; Helmholtz equation; Neumann's eigenvalue problem; integral equation method; weighted Hölder spaces; Laplacian; linearized problem; radiation; scattering; time-harmonic water wave; vertical shell
UR - http://eudml.org/doc/248858
ER -
References
top- 10.1017/S0022112070002495, J. Fluid Mech. 43 (1970), 433–449. (1970) Zbl0212.60101DOI10.1017/S0022112070002495
- 10.1017/S0305004100061417, Math. Proc. Camb. Phil. Soc. 95 (1984), 511–519. (1984) Zbl0546.76031MR0727091DOI10.1017/S0305004100061417
- 10.1002/cpa.3160030106, Comm. Pure Appl. Math. 3 (1950), 45–101. (1950) MR0037118DOI10.1002/cpa.3160030106
- Plane problem of the steady-state oscillations of a fluid in the presence of two semiimmersed cylinders, Math. Notes Acad. Sci. USSR 44 (1988), 685–690. (1988) MR0972199
- Uniqueness of a solution of a linear problem for stationary oscillations of a liquid, Diff. Equations 27 (1991), 187–194. (1991) Zbl0850.76059MR1109387
- 10.1093/qjmam/50.4.565, Q. J. Mech. Appl. Math. 50 (1997), 565–580. (1997) MR1488385DOI10.1093/qjmam/50.4.565
- 10.1017/S0022112079000148, J. Fluid Mech. 91 (1979), 253–317. (1979) Zbl0403.76025DOI10.1017/S0022112079000148
- 10.1007/BF01109726, J. Soviet Math. 10 (1978), 86–89. (1978) DOI10.1007/BF01109726
- 10.1007/978-3-642-58175-5_2, Encyclopaedia of Math. Sciences 27 (1991), 127–222. (1991) MR1098507DOI10.1007/978-3-642-58175-5_2
- Schauder estimates of solutions of elliptic boundary value problems in domains with edges on the boundary, Elliptic boundary value problems AMS Transl. 123 (1984), 141–169. (1984)
- 10.1002/mana.19881380103, Math. Nachr. 138 (1988), 27–53. (1988) MR0975198DOI10.1002/mana.19881380103
- 10.1017/S0022112096002418, J. Fluid Mech. 315 (1996), 257–266. (1996) Zbl0869.76010MR1403701DOI10.1017/S0022112096002418
- 10.1093/qjmam/50.2.165, Q. J. Mech. Appl. Math. 50 (1997), 165–178. (1997) MR1451065DOI10.1093/qjmam/50.2.165
- 10.1017/S0022112081002875, J. Fluid Mech. 104 (1981), 159–187. (1981) Zbl0463.76021DOI10.1017/S0022112081002875
- On uniqueness of the water-wave problem for a floating toroidal body, Appl. Math. Report 96/1 (1996), Department of Mathematics, University of Manchester, England. (1996)
- 10.1017/S0022112084002287, J. Fluid Mech. 148 (1984), 137–154. (1984) MR0778139DOI10.1017/S0022112084002287
- 10.1017/S0022112081002887, J. Fluid Mech. 104 (1981), 189–215. (1981) Zbl0455.76007DOI10.1017/S0022112081002887
- 10.1017/S0305004100025561, Proc. Camb. Phil. Soc. 46 (1950), 141–152. (1950) Zbl0035.42201MR0033714DOI10.1017/S0305004100025561
- Some unsolved and unfinished problems in the theory of waves, Wave Asymptotics, Camb. Univ. Press, Cambridge, 1992. (1992) Zbl0817.76008MR1174354
- On the problem of the steady state oscillations of a fluid layer of variable depth, Trans. Moscow Math. Soc. 28 (1973), 56–73. (1973) MR0481654
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.