Symmetry and folding of continued fractions

Alfred J. Van der Poorten

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 603-611
  • ISSN: 1246-7405

Abstract

top
Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.

How to cite

top

Van der Poorten, Alfred J.. "Symmetry and folding of continued fractions." Journal de théorie des nombres de Bordeaux 14.2 (2002): 603-611. <http://eudml.org/doc/248887>.

@article{VanderPoorten2002,
abstract = {Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.},
author = {Van der Poorten, Alfred J.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {continued fractions; folding Lemma},
language = {eng},
number = {2},
pages = {603-611},
publisher = {Université Bordeaux I},
title = {Symmetry and folding of continued fractions},
url = {http://eudml.org/doc/248887},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Van der Poorten, Alfred J.
TI - Symmetry and folding of continued fractions
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 603
EP - 611
AB - Michel Mendès France's “Folding Lemma” for continued fraction expansions provides an unusual explanation for the well known symmetry in the expansion of a quadratic irrational integer.
LA - eng
KW - continued fractions; folding Lemma
UR - http://eudml.org/doc/248887
ER -

References

top
  1. [1] F.M. Dekking, M. Mendès France, A.J. Van Der Poorten, FOLDS!. Math. Intelligencer4 (1982), 130-138; II: Symmetry disturbed. ibid. 173-181; III: More morphisms. ibid. 190-195. Erratum 5 (1983), page 5. Zbl0493.10003MR684028
  2. [2] M. Mendès France, Sur les fractions continues limitées. Acta Arith.23 (1973), 207-215. Zbl0228.10007MR323727
  3. [3] M. Mendès France, Principe de la symétrie perturbée. Seminar on Number Theory, Paris 1979-80, 77-98, Progr. Math. 12, Birkhäuser, Boston, Mass., 1981. [MR 83a:10089] Zbl0451.10019MR633890
  4. [4] A.J. Van Der Poorten, J. Shallit, Folded continued fractions. J. Number Theory40 (1992), 237-250. Zbl0753.11005MR1149740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.