An explicit formula for the Mahler measure of a family of 3 -variable polynomials

Chris J. Smyth

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 683-700
  • ISSN: 1246-7405

Abstract

top
An explicit formula for the Mahler measure of the 3 -variable Laurent polynomial a + b x - 1 + c y + ( a + b x + c y ) z is given, in terms of dilogarithms and trilogarithms.

How to cite

top

Smyth, Chris J.. "An explicit formula for the Mahler measure of a family of $3$-variable polynomials." Journal de théorie des nombres de Bordeaux 14.2 (2002): 683-700. <http://eudml.org/doc/248892>.

@article{Smyth2002,
abstract = {An explicit formula for the Mahler measure of the $3$-variable Laurent polynomial $a + bx^\{-1\} + cy + (a + bx + cy)z$ is given, in terms of dilogarithms and trilogarithms.},
author = {Smyth, Chris J.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Mahler's measure; polylogarithm},
language = {eng},
number = {2},
pages = {683-700},
publisher = {Université Bordeaux I},
title = {An explicit formula for the Mahler measure of a family of $3$-variable polynomials},
url = {http://eudml.org/doc/248892},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Smyth, Chris J.
TI - An explicit formula for the Mahler measure of a family of $3$-variable polynomials
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 683
EP - 700
AB - An explicit formula for the Mahler measure of the $3$-variable Laurent polynomial $a + bx^{-1} + cy + (a + bx + cy)z$ is given, in terms of dilogarithms and trilogarithms.
LA - eng
KW - Mahler's measure; polylogarithm
UR - http://eudml.org/doc/248892
ER -

References

top
  1. [B1] D.W. Boyd, Speculations concerning the range of Mahler's measure. Canad. Math Bull.24 (1981), 453-469. Zbl0474.12005MR644535
  2. [B2] D.W. Boyd, Mahler's measure and special values of L-functions. Experiment. Math.7 (1998), 37-82. Zbl0932.11069MR1618282
  3. [B3] D.W. Boyd, Uniform approximation to Mahler's measure in several variables. Canad. Math. Bull.41 (1998), 125-128. Zbl0898.11040MR1618904
  4. [B4] D.W. Boyd, Mahler's measure and special values of L-functions-some conjectures. Number theory in progress, Vol. 1 (Zakopane-Koscielisko, 1997), 27-34, de Gruyter, Berlin, 1999. Zbl0990.11061MR1689496
  5. [BRV] D.W. Boyd, F. Rodriguez Villegas, Mahler's measure and the dilogarithm. I. Canad. J. Math.54 (2002), 468-492. Zbl1032.11028MR1900760
  6. [K] E.E. Kummer, Über die Transcendenten, welche aus wiederholten Integrntionen rationaler Formeln entstehen. J. für Math. (Crelle) 21 (1840), 328-371. 
  7. [L] L. Lewin, Dilogarithms and Associated Functions. Macdonald, London, 1958. Zbl0083.35904MR105524
  8. [R] G.A. Ray, Relations between Mahler's measure and values of L-series. Canad. J. Math.39 (1987), 694-732. Zbl0621.12005MR905752
  9. [RV] F. Rodriguez Villegas, Modular Mahler measures. I, Topics in number theory (University Park, PA, 1997), 17-48, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999. Zbl0980.11026MR1691309
  10. [Sc] A. Schinzel, Polynomials with Special Regard to Reducibility. With an appendix by Umberto Zannier. Encyclopedia of Mathematics and its Applications, 77, Cambridge University Press, Cambridge, 2000. Zbl0956.12001MR1770638
  11. [Sm] C.J. Smyth, On measures of polynomials in several variables. Bull. Austral. Math. Soc. Ser. A23 (1981), 49-63. Corrigendum (with G. Myerson): Bull. Austral. Math. Soc. Ser. A26 (1982), 317-319. Zbl0442.10034MR615132
  12. [Z] D. Zagier, The Bloch- Wigner-Ramakrishnan polylogarithm function. Math. Ann.286 (1990), 613-624. Zbl0698.33001MR1032949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.