A group law on smooth real quartics having at least real branches
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 249-256
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Ciliberto, C. Pedrini, Real abelian varieties and real algebraic curves. Lectures in real geometry (Madrid, 1994), 167-256, de Gruyter Exp. Math.23, de Gruyter, Berlin, 1996. Zbl0895.14013MR1440212
- [2] G. Fichou, Loi de groupe sur la composante neutre de la jacobienne d'une courbe réelle de genre 2 ayant beaucoup de composantes connexes réelles. Manuscripta Math.104 (2001), 459-466. Zbl1033.11031MR1836107
- [3] G. Fichou, Loi de groupe sur la composante neutre de la jacobienne d'une courbe réelle hyperelliptique ayant beaucoup de composantes connexes réelles, (submitted).
- [4] G. Fichou, J. Huisman, A geometric description of the neutral component of the Jacobian of a real plane curve having many pseudo-lines, (submitted). Zbl1033.14018
- [5] A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann.10 (1876), 189-198. MR1509883JFM08.0317.04
- [6] J. Huisman, Nonspecial divisors on real algebraic curves and embeddings into real projective spaces. Ann. Math. Pura Appl., to appear. Zbl1072.14072
- [7] J. Huisman, On the neutral component of the Jacobian of a real algebraic curve having many components. Indag. Math.12 (2001), 73-81. Zbl1014.14027MR1908140
- [8] J.W. Milnor, Topology from the differentiable viewpoint. Univ. Press, Virginia, 1965 Zbl0136.20402MR226651
- [9] J.H. Silverman, The arithmetic of elliptic curves. Grad. Texts in Math.106, Springer-Verlag, 1986. Zbl0585.14026MR817210