A group law on smooth real quartics having at least 3 real branches

Johan Huisman

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 249-256
  • ISSN: 1246-7405

Abstract

top
Let C be a smooth real quartic curve in 2 . Suppose that C has at least 3 real branches B 1 , B 2 , B 3 . Let B = B 1 × B 2 × B 3 and let O B . Let τ O be the map from B into the neutral component Jac ( C ) ( ) 0 of the set of real points of the jacobian of C , defined by letting τ O ( P ) be the divisor class of the divisor P i - O i . Then, τ O is a bijection. We show that this allows an explicit geometric description of the group law on Jac ( C ) ( ) 0 . It generalizes the classical geometric description of the group law on the neutral component of the set of real points of the jacobian of a cubic curve. If the quartic curve is defined over a real number field then one gets a geometric description of a subgroup of its Mordell-Weil group of index a divisor of 8 .

How to cite

top

Huisman, Johan. "A group law on smooth real quartics having at least $3$ real branches." Journal de théorie des nombres de Bordeaux 14.1 (2002): 249-256. <http://eudml.org/doc/248897>.

@article{Huisman2002,
abstract = {Let $C$ be a smooth real quartic curve in $\mathbb \{P\}^2$. Suppose that $C$ has at least $3$ real branches $B_1, B_2 , B_3$. Let $B = B_1 \times B_2 \times B_3$ and let $O \in B$. Let $\tau _O$ be the map from $B$ into the neutral component Jac$(C)(\mathbb \{R\})^0$ of the set of real points of the jacobian of $C$, defined by letting $\tau _O (P)$ be the divisor class of the divisor $\sum P_i - O_i$. Then, $\tau _O$ is a bijection. We show that this allows an explicit geometric description of the group law on Jac$(C)(\mathbb \{R\})^0$. It generalizes the classical geometric description of the group law on the neutral component of the set of real points of the jacobian of a cubic curve. If the quartic curve is defined over a real number field then one gets a geometric description of a subgroup of its Mordell-Weil group of index a divisor of $8$.},
author = {Huisman, Johan},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {real algebraic curve; Jacobian; Mordell-Weil group; real hyperelliptic curves},
language = {eng},
number = {1},
pages = {249-256},
publisher = {Université Bordeaux I},
title = {A group law on smooth real quartics having at least $3$ real branches},
url = {http://eudml.org/doc/248897},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Huisman, Johan
TI - A group law on smooth real quartics having at least $3$ real branches
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 249
EP - 256
AB - Let $C$ be a smooth real quartic curve in $\mathbb {P}^2$. Suppose that $C$ has at least $3$ real branches $B_1, B_2 , B_3$. Let $B = B_1 \times B_2 \times B_3$ and let $O \in B$. Let $\tau _O$ be the map from $B$ into the neutral component Jac$(C)(\mathbb {R})^0$ of the set of real points of the jacobian of $C$, defined by letting $\tau _O (P)$ be the divisor class of the divisor $\sum P_i - O_i$. Then, $\tau _O$ is a bijection. We show that this allows an explicit geometric description of the group law on Jac$(C)(\mathbb {R})^0$. It generalizes the classical geometric description of the group law on the neutral component of the set of real points of the jacobian of a cubic curve. If the quartic curve is defined over a real number field then one gets a geometric description of a subgroup of its Mordell-Weil group of index a divisor of $8$.
LA - eng
KW - real algebraic curve; Jacobian; Mordell-Weil group; real hyperelliptic curves
UR - http://eudml.org/doc/248897
ER -

References

top
  1. [1] C. Ciliberto, C. Pedrini, Real abelian varieties and real algebraic curves. Lectures in real geometry (Madrid, 1994), 167-256, de Gruyter Exp. Math.23, de Gruyter, Berlin, 1996. Zbl0895.14013MR1440212
  2. [2] G. Fichou, Loi de groupe sur la composante neutre de la jacobienne d'une courbe réelle de genre 2 ayant beaucoup de composantes connexes réelles. Manuscripta Math.104 (2001), 459-466. Zbl1033.11031MR1836107
  3. [3] G. Fichou, Loi de groupe sur la composante neutre de la jacobienne d'une courbe réelle hyperelliptique ayant beaucoup de composantes connexes réelles, (submitted). 
  4. [4] G. Fichou, J. Huisman, A geometric description of the neutral component of the Jacobian of a real plane curve having many pseudo-lines, (submitted). Zbl1033.14018
  5. [5] A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann.10 (1876), 189-198. MR1509883JFM08.0317.04
  6. [6] J. Huisman, Nonspecial divisors on real algebraic curves and embeddings into real projective spaces. Ann. Math. Pura Appl., to appear. Zbl1072.14072
  7. [7] J. Huisman, On the neutral component of the Jacobian of a real algebraic curve having many components. Indag. Math.12 (2001), 73-81. Zbl1014.14027MR1908140
  8. [8] J.W. Milnor, Topology from the differentiable viewpoint. Univ. Press, Virginia, 1965 Zbl0136.20402MR226651
  9. [9] J.H. Silverman, The arithmetic of elliptic curves. Grad. Texts in Math.106, Springer-Verlag, 1986. Zbl0585.14026MR817210

NotesEmbed ?

top

You must be logged in to post comments.