2 -modular lattices from ternary codes

Robin Chapman; Steven T. Dougherty; Philippe Gaborit; Patrick Solé

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 73-85
  • ISSN: 1246-7405

Abstract

top
The alphabet 𝐅 3 + v 𝐅 3 where v 2 = 1 is viewed here as a quotient of the ring of integers of 𝐐 ( - 2 ) by the ideal (3). Self-dual 𝐅 3 + v 𝐅 3 codes for the hermitian scalar product give 2 -modular lattices by construction A K . There is a Gray map which maps self-dual codes for the Euclidean scalar product into Type III codes with a fixed point free involution in their automorphism group. Gleason type theorems for the symmetrized weight enumerators of Euclidean self-dual codes and the length weight enumerator of hermitian self-dual codes are derived. As an application we construct an optimal 2 -modular lattice of dimension 18 and minimum norm 3 and new odd 2 -modular lattices of norm 3 for dimensions 16 , 18 , 20 , 22 , 24 , 26 , 28 and 30 .

How to cite

top

Chapman, Robin, et al. "$2$-modular lattices from ternary codes." Journal de théorie des nombres de Bordeaux 14.1 (2002): 73-85. <http://eudml.org/doc/248902>.

@article{Chapman2002,
abstract = {The alphabet $\mathbf \{F\}_3 + v\mathbf \{F\}_3$ where $v^2 = 1$ is viewed here as a quotient of the ring of integers of $\mathbf \{Q\}(\sqrt\{-2\})$ by the ideal (3). Self-dual $\mathbf \{F\}_3 + v\mathbf \{F\}_3$ codes for the hermitian scalar product give $2$-modular lattices by construction $A_K$. There is a Gray map which maps self-dual codes for the Euclidean scalar product into Type III codes with a fixed point free involution in their automorphism group. Gleason type theorems for the symmetrized weight enumerators of Euclidean self-dual codes and the length weight enumerator of hermitian self-dual codes are derived. As an application we construct an optimal $2$-modular lattice of dimension $18$ and minimum norm $3$ and new odd $2$-modular lattices of norm $3$ for dimensions $16,18,20,22,24,26,28$ and $30$.},
author = {Chapman, Robin, Dougherty, Steven T., Gaborit, Philippe, Solé, Patrick},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {1},
pages = {73-85},
publisher = {Université Bordeaux I},
title = {$2$-modular lattices from ternary codes},
url = {http://eudml.org/doc/248902},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Chapman, Robin
AU - Dougherty, Steven T.
AU - Gaborit, Philippe
AU - Solé, Patrick
TI - $2$-modular lattices from ternary codes
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 73
EP - 85
AB - The alphabet $\mathbf {F}_3 + v\mathbf {F}_3$ where $v^2 = 1$ is viewed here as a quotient of the ring of integers of $\mathbf {Q}(\sqrt{-2})$ by the ideal (3). Self-dual $\mathbf {F}_3 + v\mathbf {F}_3$ codes for the hermitian scalar product give $2$-modular lattices by construction $A_K$. There is a Gray map which maps self-dual codes for the Euclidean scalar product into Type III codes with a fixed point free involution in their automorphism group. Gleason type theorems for the symmetrized weight enumerators of Euclidean self-dual codes and the length weight enumerator of hermitian self-dual codes are derived. As an application we construct an optimal $2$-modular lattice of dimension $18$ and minimum norm $3$ and new odd $2$-modular lattices of norm $3$ for dimensions $16,18,20,22,24,26,28$ and $30$.
LA - eng
UR - http://eudml.org/doc/248902
ER -

References

top
  1. [1] C. Bachoc, Application of coding Theory to the construction of modular lattices. J. Combin. Theory Ser. A78 (1997),92-119. Zbl0876.94053MR1439633
  2. [2] A. Bonnecaze, P. Solé, A.R. Calderbank, Quaternary quadratic residue codes and unimodular lattices. IEEE Trans. Inform. Theory41 (1995), 366-377. Zbl0822.94009MR1326285
  3. [3] A. Bonnecaze, P. Solé, C. Bachoc, B. Mourrain, Type II codes over Z4. IEEE Trans. Inform. Theory43 (1997), 969-976. Zbl0898.94009MR1454231
  4. [4] S. Buyuklieva, On the Binary Self-Dual Codes with an Automorphism of Order 2. Designs, Codes and Cryptography12 (1) (1997), 39-48. Zbl0906.94017MR1462520
  5. [5] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups. Springer, Heidelberg, 1993. Zbl0785.11036MR1194619
  6. [6] J.H. Conway, N.J.A. Sloane, Self-dual codes over the integers modulo 4. J. Combin. Theory Ser. A62 (1993), 30-45. Zbl0763.94018MR1198379
  7. [7] S.T. Dougherty, Some thought about codes over groups. preprint. 
  8. [8] S.T. Dougherty, Shadow codes and weight enumerators. IEEE Trans. Inform. Theory, vol. IT-41 (1995), 762-768. Zbl0824.94020MR1331262
  9. [9] S.T. Dougherty, P. Gaborit, M. Harada, A. Munemasa, P. Solé, Self-dual Type IV codes over rings. IEEE Trans. Inform. Theory45 (1999), 2162-2168. Zbl0956.94025MR1720676
  10. [10] S.T. Dougherty, P. Gaborit, M. Harada, P. Solé, Type II codes over F2 + uF2. IEEE Trans. Inform. Theory45 (1999), 32-45. Zbl0947.94023MR1677846
  11. [11] J. Fields, P. Gaborit, J. Leon, V. Pless, All Self-Dual Z4 Codes of Length 15 or Less Are Known. IEEE Trans. Inform. Theory44 (1998), 311-322. Zbl0899.94027MR1486672
  12. [12] P. Gaborit, Mass formula for self-dual codes over Z4 and Fq + uFq rings. IEEE Trans. Inform. Theory42 (1996), 1222-1228. Zbl0854.94013MR1445640
  13. [13] M. Harada, T.A. Gulliver, H. Kaneta, Classification of extremal double circulant selfdual codes of length up to 62. Discrete Math.188 (1998), 127-136. Zbl0949.94004MR1630462
  14. [14] A.R. HammonsJr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, A linear construction for certain Kerdock and Preparata codes. Bull. AMS29 (1993), 218-222. Zbl0783.94026MR1215307
  15. [15] G. Hughes, Codes and arrays from cocycles. Ph.D. thesis, Royal Melbourne Institute of Technology, 2000. Zbl0981.05019
  16. [16] G. Hughes, Constacyclic codes, cocycles and a u+v|u-v construction. IEEE Trans. Inform. Theory46 (2000), 674-680. Zbl0996.94053MR1748996
  17. [17] F.J. Macwilliams, N.J.A. Sloane, The theory of error correcting codes. North-Holland, 1977. Zbl0369.94008
  18. [18] J. Martinet, Les réseaux parfaits des espaces euclidiens. Masson, Paris, 1996. Zbl0869.11056MR1434803
  19. [19] V. Pless, The Number of Isotropic Subspaces in a Finite Geometry. Atti. Accad. Naz. Lincei Rend.39 (1965), 418-421. Zbl0136.42002MR199785
  20. [20] V. Pless, P. Solé, Z. Qian, Cyclic self-dual Z4-codes. Finite Fields Their Appl.3 (1997), 48-69. Zbl1053.94573MR1429043
  21. [21] H-G. Quebbemann, Modular Lattices in Euclidean Spaces. J. Number Theory54 (1995), 190-202. Zbl0874.11038MR1354045
  22. [22] E. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Theory73 (1999), 359-389. Zbl0917.11026MR1657980
  23. [23] G.C. Shephard, J.A. Todd, Finite unitary reflection groups. Can. J. Math.6 (1954), 274-304. Zbl0055.14305MR59914
  24. [24] J. Wood, Duality for Modules over Finite Rings and Applications to Coding Theory. Amer. J. Math121 (1999), 555-575. Zbl0968.94012MR1738408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.