On the ultrametric Stone-Weierstrass theorem and Mahler's expansion
Paul-Jean Cahen; Jean-Luc Chabert
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 43-57
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCahen, Paul-Jean, and Chabert, Jean-Luc. "On the ultrametric Stone-Weierstrass theorem and Mahler's expansion." Journal de théorie des nombres de Bordeaux 14.1 (2002): 43-57. <http://eudml.org/doc/248912>.
@article{Cahen2002,
abstract = {We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If $E$ is a subset of a rank-one valuation domain $V$, we show that the ring of polynomial functions is dense in the ring of continuous functions from $E$ to $V$ if and only if the topological closure $\hat\{E\}$ of $E$ in the completion $\hat\{V\}$ of $V$ is compact. We then show how to expand continuous functions in sums of polynomials.},
author = {Cahen, Paul-Jean, Chabert, Jean-Luc},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {ultrametric; Stone-Weierstrass theorems},
language = {eng},
number = {1},
pages = {43-57},
publisher = {Université Bordeaux I},
title = {On the ultrametric Stone-Weierstrass theorem and Mahler's expansion},
url = {http://eudml.org/doc/248912},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Cahen, Paul-Jean
AU - Chabert, Jean-Luc
TI - On the ultrametric Stone-Weierstrass theorem and Mahler's expansion
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 43
EP - 57
AB - We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If $E$ is a subset of a rank-one valuation domain $V$, we show that the ring of polynomial functions is dense in the ring of continuous functions from $E$ to $V$ if and only if the topological closure $\hat{E}$ of $E$ in the completion $\hat{V}$ of $V$ is compact. We then show how to expand continuous functions in sums of polynomials.
LA - eng
KW - ultrametric; Stone-Weierstrass theorems
UR - http://eudml.org/doc/248912
ER -
References
top- [1] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France92 (1964), 117-180. Zbl0158.30201MR188199
- [2] M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings. J. reine angew. Math.490 (1997), 101-127. Zbl0899.13022MR1468927
- [3] M. Bhargava, K.S. Kedlaya, Continuous functions on compact subsets of local fields. Acta Arith.91 (1999), 191-198. Zbl0979.11054MR1735672
- [4] P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials. Amer. Math. Soc. Surveys and Monographs, 48, Providence, 1997. Zbl0884.13010MR1421321
- [5] P.-J. Cahen, J.-L. Chabert, Skolem Properties and Integer-Valued Polynomials: A Survey, in Advances in Commutative Ring Theory. Lecture Notes in Pure and Appl. Math., Dekker, New York, 205, 1999, 175-195. Zbl0966.13016MR1772337
- [6] P.-J. Cahen, J.-L. Chabert, S. Frisch, Interpolation domains. J. Algebra125 (2000), 794-803. Zbl0990.13014MR1741562
- [7] J-L. Chabert, Generalized Factorial Ideals. Arabian J. Sci. and Eng.26 (2001), 51-68. Zbl1271.13039MR1843456
- [8] R.F. Coleman, p-adic Banach spaces and families of modular forms. Invent. Math.127 (1997), 417-479. Zbl0918.11026MR1431135
- [9] J. Dieudonné, Sur les fonctions continues p-adiques. Bull. Sci. Math. 2ème série 68 (1944), 79-95. Zbl0060.08204MR13142
- [10] G. Gerboud, Construction, sur un anneau de Dedekind, d'une base régulière de polynômes à valeurs entières. Manuscripta Math.65 (1989), 167-179. Zbl0698.13007MR1011430
- [11] J. Hily, Sur les espaces de Banach ultramétriques, Algèbres de fonctions localement analytiques. Thèse d'Etat, Nancy, 1969.
- [12] I. Kaplansky, Topological Rings. Amer. J. Math.69 (1947), 153-183. Zbl0034.16604MR19596
- [13] I. Kaplansky, The Weierstrass theorem in fields with valuations. Proc. Amer. Math. Soc.1 (1950), 356-357. Zbl0038.07002MR35760
- [14] K. Mahler, An Interpolation Series for Continuous Functions of a p-adic Variable. J. Reine Angew. Math.199 (1958), 23-34 and 208 (1961), 70-72. Zbl0080.03504MR95821
- [15] D.L. McQuillan, On a Theorem of R. Gilmer. J. Number Theory39 (1991), 245-250. Zbl0739.13009MR1133554
- [16] A.F. Monna, Analyse non-archimédienne. Springer-Verlag, Berlin-New York, 1970. Zbl0203.11501MR295033
- [17] J.-P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques. Inst. Hautes Etudes Sci. Publ. Math.12 (1962), 69-85. Zbl0104.33601MR144186
- [18] K. Tateyama, Continuous Functions on Discrete Valuations Rings. J. Number Theory75 (1999), 23-33. Zbl0938.12003MR1677536
- [19] D. Treiber, A non-archimedean "curve integral" and its application to the construction of potentials and solutions of differential equations. Bull. Soc. Math. France, Mémoire 39-40, 1974. Zbl0312.26012MR362391
- [20] M. Van Der Put, Algèbres de fonctions continues p-adiques, I. Indag. Math.30 (1968), 401-411. Zbl0167.43503MR234290
- [21] C.G. WagnerInterpolation series for continuous functions on π-adic completions of GF(q, x). Acta Arith.17 (1971), 389-406. Zbl0223.12009
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.