On the ultrametric Stone-Weierstrass theorem and Mahler's expansion

Paul-Jean Cahen; Jean-Luc Chabert

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 43-57
  • ISSN: 1246-7405

Abstract

top
We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If is a subset of a rank-one valuation domain , we show that the ring of polynomial functions is dense in the ring of continuous functions from to if and only if the topological closure of in the completion of is compact. We then show how to expand continuous functions in sums of polynomials.

How to cite

top

Cahen, Paul-Jean, and Chabert, Jean-Luc. "On the ultrametric Stone-Weierstrass theorem and Mahler's expansion." Journal de théorie des nombres de Bordeaux 14.1 (2002): 43-57. <http://eudml.org/doc/248912>.

@article{Cahen2002,
abstract = {We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If $E$ is a subset of a rank-one valuation domain $V$, we show that the ring of polynomial functions is dense in the ring of continuous functions from $E$ to $V$ if and only if the topological closure $\hat\{E\}$ of $E$ in the completion $\hat\{V\}$ of $V$ is compact. We then show how to expand continuous functions in sums of polynomials.},
author = {Cahen, Paul-Jean, Chabert, Jean-Luc},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {ultrametric; Stone-Weierstrass theorems},
language = {eng},
number = {1},
pages = {43-57},
publisher = {Université Bordeaux I},
title = {On the ultrametric Stone-Weierstrass theorem and Mahler's expansion},
url = {http://eudml.org/doc/248912},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Cahen, Paul-Jean
AU - Chabert, Jean-Luc
TI - On the ultrametric Stone-Weierstrass theorem and Mahler's expansion
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 43
EP - 57
AB - We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If $E$ is a subset of a rank-one valuation domain $V$, we show that the ring of polynomial functions is dense in the ring of continuous functions from $E$ to $V$ if and only if the topological closure $\hat{E}$ of $E$ in the completion $\hat{V}$ of $V$ is compact. We then show how to expand continuous functions in sums of polynomials.
LA - eng
KW - ultrametric; Stone-Weierstrass theorems
UR - http://eudml.org/doc/248912
ER -

References

top
  1. [1] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France92 (1964), 117-180. Zbl0158.30201MR188199
  2. [2] M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings. J. reine angew. Math.490 (1997), 101-127. Zbl0899.13022MR1468927
  3. [3] M. Bhargava, K.S. Kedlaya, Continuous functions on compact subsets of local fields. Acta Arith.91 (1999), 191-198. Zbl0979.11054MR1735672
  4. [4] P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials. Amer. Math. Soc. Surveys and Monographs, 48, Providence, 1997. Zbl0884.13010MR1421321
  5. [5] P.-J. Cahen, J.-L. Chabert, Skolem Properties and Integer-Valued Polynomials: A Survey, in Advances in Commutative Ring Theory. Lecture Notes in Pure and Appl. Math., Dekker, New York, 205, 1999, 175-195. Zbl0966.13016MR1772337
  6. [6] P.-J. Cahen, J.-L. Chabert, S. Frisch, Interpolation domains. J. Algebra125 (2000), 794-803. Zbl0990.13014MR1741562
  7. [7] J-L. Chabert, Generalized Factorial Ideals. Arabian J. Sci. and Eng.26 (2001), 51-68. Zbl1271.13039MR1843456
  8. [8] R.F. Coleman, p-adic Banach spaces and families of modular forms. Invent. Math.127 (1997), 417-479. Zbl0918.11026MR1431135
  9. [9] J. Dieudonné, Sur les fonctions continues p-adiques. Bull. Sci. Math. 2ème série 68 (1944), 79-95. Zbl0060.08204MR13142
  10. [10] G. Gerboud, Construction, sur un anneau de Dedekind, d'une base régulière de polynômes à valeurs entières. Manuscripta Math.65 (1989), 167-179. Zbl0698.13007MR1011430
  11. [11] J. Hily, Sur les espaces de Banach ultramétriques, Algèbres de fonctions localement analytiques. Thèse d'Etat, Nancy, 1969. 
  12. [12] I. Kaplansky, Topological Rings. Amer. J. Math.69 (1947), 153-183. Zbl0034.16604MR19596
  13. [13] I. Kaplansky, The Weierstrass theorem in fields with valuations. Proc. Amer. Math. Soc.1 (1950), 356-357. Zbl0038.07002MR35760
  14. [14] K. Mahler, An Interpolation Series for Continuous Functions of a p-adic Variable. J. Reine Angew. Math.199 (1958), 23-34 and 208 (1961), 70-72. Zbl0080.03504MR95821
  15. [15] D.L. McQuillan, On a Theorem of R. Gilmer. J. Number Theory39 (1991), 245-250. Zbl0739.13009MR1133554
  16. [16] A.F. Monna, Analyse non-archimédienne. Springer-Verlag, Berlin-New York, 1970. Zbl0203.11501MR295033
  17. [17] J.-P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques. Inst. Hautes Etudes Sci. Publ. Math.12 (1962), 69-85. Zbl0104.33601MR144186
  18. [18] K. Tateyama, Continuous Functions on Discrete Valuations Rings. J. Number Theory75 (1999), 23-33. Zbl0938.12003MR1677536
  19. [19] D. Treiber, A non-archimedean "curve integral" and its application to the construction of potentials and solutions of differential equations. Bull. Soc. Math. France, Mémoire 39-40, 1974. Zbl0312.26012MR362391
  20. [20] M. Van Der Put, Algèbres de fonctions continues p-adiques, I. Indag. Math.30 (1968), 401-411. Zbl0167.43503MR234290
  21. [21] C.G. WagnerInterpolation series for continuous functions on π-adic completions of GF(q, x). Acta Arith.17 (1971), 389-406. Zbl0223.12009

NotesEmbed ?

top

You must be logged in to post comments.