The diophantine equation
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 257-270
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Cornacchia, . Giornale di Matematiche di Battaglini46 (1908), 33-90. JFM39.0258.02
- [2] A. Faisant, L 'equation diophantienne du second degré. Hermann, Paris, 1991. Zbl0757.11012MR1169678
- [3] C.F. Gauss, Disquisitiones Arithmeticae. Yale University Press, New Haven, 1966. Zbl0136.32301MR197380
- [4] G.H. Hardy, E.M. Wright, An Introduction to Theory of Numbers, Oxford University Press, 1962. Zbl0020.29201MR568909
- [5] L.K. Hua, Introduction to Number Theory. Springer, Berlin, 1982. Zbl0483.10001MR665428
- [6] G.B. Mathews, Theory of numbers, 2nd ed. Chelsea Publishing Co., New York, 1961. MR126402JFM24.0162.01
- [7] K.R. Matthews, The Diophantine equation x2 - Dy2 = N, D > 0. Exposition. Math.18 (2000), 323-331. Zbl0976.11016MR1788328
- [8] R.A. Mollin, Fundamental Number Theory with Applications. CRC Press, New York, 1998. Zbl0943.11001
- [9] A. Nitaj, Conséquences et aspects expérimentaux des conjectures abc et de Szpiro. Thèse, Caen, 1994.
- [10] M. Pavone, A Remark on a Theorem of Serret. J. Number Theory23 (1986), 268-278. Zbl0588.10020MR845908
- [11] J. A. SERRET (Ed.), Oeuvres de Lagrange, I-XIV, Gauthiers-Villars, Paris, 1877.
- [12] J.A. Serret, Cours d'algèbre supérieure, Vol. I, 4th ed. Gauthiers-Villars, Paris, 1877. Zbl54.0117.01JFM17.0053.01
- [13] T. Skolem, Diophantische Gleichungen, Chelsea Publishing Co., New York, 1950.