# On a decomposition of polynomials in several variables

Journal de théorie des nombres de Bordeaux (2002)

- Volume: 14, Issue: 2, page 647-666
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topSchinzel, Andrzej. "On a decomposition of polynomials in several variables." Journal de théorie des nombres de Bordeaux 14.2 (2002): 647-666. <http://eudml.org/doc/248917>.

@article{Schinzel2002,

abstract = {One considers representation of a polynomial in several variables as the sum of values of univariate polynomials taken at linear combinations of the variables.},

author = {Schinzel, Andrzej},

journal = {Journal de théorie des nombres de Bordeaux},

keywords = {polynomial approximation},

language = {eng},

number = {2},

pages = {647-666},

publisher = {Université Bordeaux I},

title = {On a decomposition of polynomials in several variables},

url = {http://eudml.org/doc/248917},

volume = {14},

year = {2002},

}

TY - JOUR

AU - Schinzel, Andrzej

TI - On a decomposition of polynomials in several variables

JO - Journal de théorie des nombres de Bordeaux

PY - 2002

PB - Université Bordeaux I

VL - 14

IS - 2

SP - 647

EP - 666

AB - One considers representation of a polynomial in several variables as the sum of values of univariate polynomials taken at linear combinations of the variables.

LA - eng

KW - polynomial approximation

UR - http://eudml.org/doc/248917

ER -

## References

top- [1] N. Alon, M.B. Nathanson, I. Ruzsa, The polynomial method and restricted sums of congruence classes. J. Number Theory56 (1996), 404-417. Zbl0861.11006MR1373563
- [2] P. Diaconis, M. Shahshahani, On nonlinear functions of linear combinations. SIAM J. Sci. Stat. Comput.5 (1984), 175-191. Zbl0538.41041MR731890
- [3] W.J. Ellison, A 'Waring's problem' for homogeneous forms. Proc. Cambridge Philos. Soc.65 (1969), 663-672. Zbl0209.34305MR237450
- [4] U. Helmke, Waring's problem for binary forms. J. Pure Appl. Algebra80 (1992), 29-45. Zbl0791.11020MR1167385
- [5] A. Iarrobino, Inverse system of a symbolic power II. The Waring problem for forms. J. Algebra174 (1995), 1091-1110. Zbl0842.11016MR1337187
- [6] B.F. Logan, L.A. Shepp, Optimal reconstruction of a function from its projections. Duke Math. J.42 (1975), 645-659. Zbl0343.41020MR397240
- [7] T. Mum, A treatise on the theory of determinants. Dover, 1960. MR114826
- [8] B. Reznick, Sums of powers of complex linear forms, unpublished manuscript of 1992.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.