On the minimal displacement of points under mappings

A. I. Ban; S. G. Gal

Archivum Mathematicum (2002)

  • Volume: 038, Issue: 4, page 273-284
  • ISSN: 0044-8753

Abstract

top
New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.

How to cite

top

Ban, A. I., and Gal, S. G.. "On the minimal displacement of points under mappings." Archivum Mathematicum 038.4 (2002): 273-284. <http://eudml.org/doc/248929>.

@article{Ban2002,
abstract = {New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.},
author = {Ban, A. I., Gal, S. G.},
journal = {Archivum Mathematicum},
keywords = {fixed point; minimal displacement; defect of fixed point; best almost-fixed point; fixed point; minimal displacement; defect of fixed point; best almost-fixed point},
language = {eng},
number = {4},
pages = {273-284},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the minimal displacement of points under mappings},
url = {http://eudml.org/doc/248929},
volume = {038},
year = {2002},
}

TY - JOUR
AU - Ban, A. I.
AU - Gal, S. G.
TI - On the minimal displacement of points under mappings
JO - Archivum Mathematicum
PY - 2002
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 038
IS - 4
SP - 273
EP - 284
AB - New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.
LA - eng
KW - fixed point; minimal displacement; defect of fixed point; best almost-fixed point; fixed point; minimal displacement; defect of fixed point; best almost-fixed point
UR - http://eudml.org/doc/248929
ER -

References

top
  1. Barbu V., Mathematical methods in optimization of differential systems, (in Romanian), Ed. Academiei, Bucharest, 1989. (1989) Zbl0688.49025MR1031990
  2. Ekeland I., On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. (1974) Zbl0286.49015MR0346619
  3. Ekeland I., Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474. (1979) Zbl0441.49011MR0526967
  4. Engl H. W., Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers, Nonlinear Anal. 1(5) (1977), 495–501. (1977) Zbl0409.47040MR0636939
  5. Ky Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112 (1969), 234–240. (1969) Zbl0185.39503MR0251603
  6. Franchetti C., Lipschitz maps and the geometry of the unit ball in normed spaces, Arch. Math. 46 (1986), 76–84. (1986) Zbl0564.46014MR0829819
  7. Furi M., Martelli M., On the minimal displacement of points under alpha-Lipschitz maps in normed spaces, Bull. Un. Mat. Ital. 9 (1974), 791–799. (1974) Zbl0304.47050MR0370282
  8. Goebel K., On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 48 (1973), 151–163. (1973) Zbl0265.47046MR0328708
  9. Goebel K., Kirk W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990. (1990) Zbl0708.47031MR1074005
  10. Guay M. D., Singh K. L., Fixed points of asymptotically regular mappings, Math. Vesnik 35 (1983), 101–106. (1983) Zbl0541.54056MR0741588
  11. Kelley J. L., General Topology, Van Nostrand, New York, 1964. (1964) MR0070144
  12. Rădulescu S., Rădulescu M., Theorems and Problems in Analysis, (in Romanian), Ed. Didactică şi Pedagogică, Bucharest, 1982. (1982) 
  13. Reich S., Minimal displacement of points under weakly inward pseudo-lipschitzian mappings, I, Atti. Acad. Naz. Linzei Rend. U. Sci. Fis. Mat. Natur. 59 (1975), 40–44. (1975) MR0451058
  14. Reich S., Minimal displacement of points under weakly inward pseudo-lipschitzian mappings, II, Atti. Acad. Naz. Linzei Rend. U. Sci. Fis. Mat. Natur. 60 (1976), 95–96. (1976) Zbl0362.47024MR0487647
  15. Rhoades B. E., Sessa S., Khan M. S., Swaleh M., On fixed points of asymptotically regular mappings, J. Austral. Math. Soc. (Series A) 43 (1987), 328–346. (1987) Zbl0659.54042MR0904393
  16. Rus I. A., Principles and Applications of Fixed Point Theory, (in Romanian), Ed. Dacia, Cluj-Napoca, 1979. (1979) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.