Heteroclinic orbits in plane dynamical systems
Luisa Malaguti; Cristina Marcelli
Archivum Mathematicum (2002)
- Volume: 038, Issue: 3, page 183-200
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMalaguti, Luisa, and Marcelli, Cristina. "Heteroclinic orbits in plane dynamical systems." Archivum Mathematicum 038.3 (2002): 183-200. <http://eudml.org/doc/248945>.
@article{Malaguti2002,
abstract = {We consider general second order boundary value problems on the whole line of the type $u^\{\prime \prime \}=h(t,u,u^\{\prime \})$, $u(-\infty )=0, u(+\infty )=1$, for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the $(u,u^\{\prime \})$ plane dynamical system.},
author = {Malaguti, Luisa, Marcelli, Cristina},
journal = {Archivum Mathematicum},
keywords = {nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems; nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems},
language = {eng},
number = {3},
pages = {183-200},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Heteroclinic orbits in plane dynamical systems},
url = {http://eudml.org/doc/248945},
volume = {038},
year = {2002},
}
TY - JOUR
AU - Malaguti, Luisa
AU - Marcelli, Cristina
TI - Heteroclinic orbits in plane dynamical systems
JO - Archivum Mathematicum
PY - 2002
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 038
IS - 3
SP - 183
EP - 200
AB - We consider general second order boundary value problems on the whole line of the type $u^{\prime \prime }=h(t,u,u^{\prime })$, $u(-\infty )=0, u(+\infty )=1$, for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the $(u,u^{\prime })$ plane dynamical system.
LA - eng
KW - nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems; nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems
UR - http://eudml.org/doc/248945
ER -
References
top- Cahn J. W., Mallet-Paret J., Van Vleck E. S., Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math. 59 (1999), 455–493. (1999) Zbl0917.34052MR1654427
- Chow S. N., Lin X. B., Mallet-Paret J., Transition layers for singularly perturbed delay differential equations with monotone nonlinearities, J. Dynam. Differential Equations 1 (1989), 3–43. (1989) Zbl0684.34071MR1010959
- Hsu C. H., Lin, S S., Existence and multiplicity of traveling waves in a lattice dynamical system, J. Diffetrential Equations 164 (2000), 431–450. Zbl0954.34029MR1765570
- Huang W., Monotonicity of heteroclinic orbits and spectral properties of variational equations for delay differential equations, J. Differential Equations 162 (2000), 91–139. Zbl0954.34071MR1741874
- Erbe L., Tang M., Structure of positive radial solutions of semilinear elliptic equations, J. Differential Equations 133 (1997), 179–202. (1997) Zbl0871.34023MR1427849
- Malaguti L., Marcelli C., Existence of bounded trajectories via upper and lower solutions, Discrete Contin. Dynam. Systems 6 (2000), 575–590. Zbl0979.34019MR1757388
- Malaguti L., Marcelli C., Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms, Math. Nachr. 242 (2002). Zbl1016.35036MR1916855
- Marcelli C., Rubbioni P., A new extension of classical Müller’s theorem, Nonlinear Anal. 28 (1997), 1759–1767. (1997) Zbl0877.34006MR1432630
- O’Regan D., Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic Publishers, 1997. (1997) Zbl1077.34505MR1449397
- Ortega R., Tineo A., Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc. 124 (1996), 2089–2096. (1996) Zbl0858.34018MR1342038
- Volpert V. A., Suhov, Yu. M., Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equation, Ergodic Theory Dynam. Systems 19 (1999), 809–835. (1999) MR1695921
- Walter W., Differential and Integral Inequalities, Springer-Verlag, Berlin 1970. (1970) Zbl0252.35005MR0271508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.