Conditions of Prodi-Serrin's type for local regularity of suitable weak solutions to the Navier-Stokes equations
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 4, page 619-639
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Apl. Math. 35 (1982), 771-831. (1982) Zbl0509.35067MR0673830
- Kučera P., Skalák Z., Smoothness of the velocity time derivative in the vicinity of regular points of the Navier-Stokes equations, Proceedings of the Seminar “Euler and Navier-Stokes Equations (Theory, Numerical Solution, Applications)”, Institute of Thermomechanics AS CR, Editors: K. Kozel, J. Příhoda, M. Feistauer, Prague, 2001, pp.83-86.
- Ladyzhenskaya O.A., Seregin G.A., On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999), 356-387. (1999) Zbl0954.35129MR1738171
- Lin F., A new proof of the Caffarelli-Kohn-Nirenberg Theorem, Comm. Pure Appl. Math. 51 (1998), 241-257. (1998) Zbl0958.35102MR1488514
- Neustupa J., Partial regularity of weak solutions to the Navier-Stokes equations in the class , J. Math. Fluid Mech. 1 (1999), 309-325. (1999) MR1738173
- Neustupa J., A removable singularity of a suitable weak solution to the Navier-Stokes equations, preprint.
- Nečas J., Neustupa J., New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations, preprint.
- Skalák Z., Removable Singularities of Weak Solutions of the Navier-Stokes Equations, Proceedings of the Seminar “Euler and Navier-Stokes Equations (Theory, Numerical Solution, Applications)”, Institute of Thermomechanics AS CR, Editors: K. Kozel, J. Příhoda, M. Feistauer, Prague, 2001, pp.121-124.
- Temam R., Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland Publishing Company, Amsterdam, New York, Oxford, revised edition, 1979. Zbl0981.35001MR0603444