Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 1, page 1-8
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChein, Orin, and Goodaire, Edgar G.. "Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 1-8. <http://eudml.org/doc/248960>.
@article{Chein2002,
abstract = {We investigate finite Moufang loops with a unique nonidentity commutator which are not associative, but all of whose proper subloops are associative. Curiously, perhaps, such loops turn out to be ``ring alternative'', in the sense that their loop rings are alternative rings.},
author = {Chein, Orin, Goodaire, Edgar G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Moufang loops; RA loops; alternative rings; minimal nonassociativity; Moufang loops; RA loops; alternative rings; minimal nonassociativity},
language = {eng},
number = {1},
pages = {1-8},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative},
url = {http://eudml.org/doc/248960},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Chein, Orin
AU - Goodaire, Edgar G.
TI - Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 1
EP - 8
AB - We investigate finite Moufang loops with a unique nonidentity commutator which are not associative, but all of whose proper subloops are associative. Curiously, perhaps, such loops turn out to be ``ring alternative'', in the sense that their loop rings are alternative rings.
LA - eng
KW - Moufang loops; RA loops; alternative rings; minimal nonassociativity; Moufang loops; RA loops; alternative rings; minimal nonassociativity
UR - http://eudml.org/doc/248960
ER -
References
top- Bruck R.H., A survey of binary systems, Ergeb. Math. Grenzgeb., vol. 20, Springer-Verlag, 1958. Zbl0141.01401MR0093552
- Chein O., Goodaire E.G., Loops whose loop rings are alternative, Comm. Algebra 14 (1986), 2 293-310. (1986) Zbl0582.17015MR0817047
- Chein O., Goodaire E.G., Loops whose loop rings in characteristic are alternative, Comm. Algebra 18 (1990), 3 659-688. (1990) Zbl0718.20034MR1052760
- Chein O., Goodaire E.G., Moufang loops with a unique nonidentity commutator (associator, square), J. Algebra 130 (1990), 2 369-384. (1990) Zbl0695.20040MR1051308
- Chein O., Moufang loops of small order I, Trans. Amer. Math. Soc. 188 (1974), 31-51. (1974) Zbl0286.20088MR0330336
- Chein O., Moufang loops of small order, Mem. Amer. Math. Soc. 13 (1978), 197 1-131. (1978) Zbl0378.20053MR0466391
- Chein O., Robinson D.A., An ``extra'' law for characterizing Moufang loops, Proc. Amer. Math. Soc. 33 (1972), 29-32. (1972) Zbl0215.40302MR0292987
- Fenyves F., Extra loops I, Publ. Math. Debrecen 15 (1968), 235-238. (1968) Zbl0172.02401MR0237695
- Goodaire E.G., Jespers E., Polcino Milies C., Alternative loop rings, North-Holland Math. Studies, vol. 184, Elsevier, Amsterdam, 1996. Zbl0878.17029MR1433590
- Goodaire E.G., Parmenter M.M., Semi-simplicity of alternative loop rings, Acta Math. Hungar. 50 (1987), 3-4 241-247. (1987) Zbl0634.17014MR0918159
- Jespers E., Leal G., Polcino Milies C., Classifying indecomposable RA loops, J. Algebra 176 (1995), 5057-5076. (1995) MR1351625
- Miller G.A., Moreno H.C., Nonabelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), 398-404. (1903) MR1500650
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.