On the convergence of certain sums of independent random elements

Juan Carlos Ferrando

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 1, page 77-81
  • ISSN: 0010-2628

Abstract

top
In this note we investigate the relationship between the convergence of the sequence { S n } of sums of independent random elements of the form S n = i = 1 n ε i x i (where ε i takes the values ± 1 with the same probability and x i belongs to a real Banach space X for each i ) and the existence of certain weakly unconditionally Cauchy subseries of n = 1 x n .

How to cite

top

Ferrando, Juan Carlos. "On the convergence of certain sums of independent random elements." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 77-81. <http://eudml.org/doc/248962>.

@article{Ferrando2002,
abstract = {In this note we investigate the relationship between the convergence of the sequence $\lbrace S_\{n\}\rbrace $ of sums of independent random elements of the form $S_\{n\}=\sum _\{i=1\}^\{n\}\varepsilon _\{i\}x_\{i\}$ (where $\varepsilon _\{i\}$ takes the values $\pm \,1$ with the same probability and $x_\{i\}$ belongs to a real Banach space $X$ for each $i\in \mathbb \{N\}$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum _\{n=1\}^\{\infty \}x_\{n\}$.},
author = {Ferrando, Juan Carlos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {independent random elements; copy of $c_\{0\}$; Pettis integrable function; perfect measure space; independent random elements; copy of ; Pettis integrable function; perfect measure space},
language = {eng},
number = {1},
pages = {77-81},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the convergence of certain sums of independent random elements},
url = {http://eudml.org/doc/248962},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Ferrando, Juan Carlos
TI - On the convergence of certain sums of independent random elements
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 77
EP - 81
AB - In this note we investigate the relationship between the convergence of the sequence $\lbrace S_{n}\rbrace $ of sums of independent random elements of the form $S_{n}=\sum _{i=1}^{n}\varepsilon _{i}x_{i}$ (where $\varepsilon _{i}$ takes the values $\pm \,1$ with the same probability and $x_{i}$ belongs to a real Banach space $X$ for each $i\in \mathbb {N}$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum _{n=1}^{\infty }x_{n}$.
LA - eng
KW - independent random elements; copy of $c_{0}$; Pettis integrable function; perfect measure space; independent random elements; copy of ; Pettis integrable function; perfect measure space
UR - http://eudml.org/doc/248962
ER -

References

top
  1. Cembranos P., Mendoza J., Banach Spaces of Vector-Valued Functions, LNM 1676, Springer, 1997. Zbl0902.46017MR1489231
  2. Díaz S., Fernández A., Florencio M., Paúl P.J., Complemented copies of c 0 in the space of Pettis integrable functions, Quaestiones Math. 16 (1993), 61-66. (1993) MR1217475
  3. Diestel J., Sequences and series in Banach spaces, GTM 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. MR0737004
  4. Diestel J., Uhl J., Vector measures, Math Surveys 15, Amer. Math. Soc., Providence, 1977. Zbl0521.46035MR0453964
  5. Ferrando J.C., On a theorem of Kwapień, Quaestiones Math. 24 (2001), 51-54. (2001) Zbl1019.46010MR1824912
  6. Freniche F.J., Embedding c 0 in the space of Pettis integrable functions, Quaestiones Math. 21 (1998), 261-267. (1998) Zbl0963.46025MR1701785
  7. Halmos P.R., Measure Theory, GTM 18, Springer, New York-Berlin-Heidelberg-Barcelona, 1950. Zbl0283.28001MR0033869
  8. Kwapień S., On Banach spaces containing c 0 , Studia Math. 52 (1974), 187-188. (1974) MR0356156
  9. Vakhania N.N., Tarieladze V.I., Chobanian S.A., Probability Distributions on Banach Spaces, D. Reidel Publishing Company, Dordrecht, 1987. MR1435288

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.