A proof for the Blair-Hager-Johnson theorem on absolute z -embedding

Kaori Yamazaki

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 1, page 175-179
  • ISSN: 0010-2628

Abstract

top
In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space X is z -embedded in every larger Tychonoff space if and only if X is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.

How to cite

top

Yamazaki, Kaori. "A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 175-179. <http://eudml.org/doc/248963>.

@article{Yamazaki2002,
abstract = {In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space $X$ is $z$-embedded in every larger Tychonoff space if and only if $X$ is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.},
author = {Yamazaki, Kaori},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {absolute $z$-embedding; absolute $C$-embedding; absolute $C^*$-embedding; absolute embeddings; almost compact; Lindelöf; compact; pseudocompact; absolute -embedding; absolute -embedding; absolute -embedding; absolute embeddings; almost compact; Lindelöf; compact; pseudocompact},
language = {eng},
number = {1},
pages = {175-179},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding},
url = {http://eudml.org/doc/248963},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Yamazaki, Kaori
TI - A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 175
EP - 179
AB - In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space $X$ is $z$-embedded in every larger Tychonoff space if and only if $X$ is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.
LA - eng
KW - absolute $z$-embedding; absolute $C$-embedding; absolute $C^*$-embedding; absolute embeddings; almost compact; Lindelöf; compact; pseudocompact; absolute -embedding; absolute -embedding; absolute -embedding; absolute embeddings; almost compact; Lindelöf; compact; pseudocompact
UR - http://eudml.org/doc/248963
ER -

References

top
  1. Alò R.A., Shapiro H.L., Normal Topological Spaces, Cambridge University Press, Cambridge, 1974. MR0390985
  2. Arhangel'skii A.V., Relative topological properties and relative topological spaces, Topology Appl. 70 (1996), 87-99. (1996) Zbl0848.54016MR1397067
  3. Arhangel'skii A.V., Tartir J., A characterization of compactness by relative separation property, Questions Answers Gen. Topology 14 (1996), 49-52. (1996) MR1384052
  4. Aull C.E., Some embeddings related to C * -embeddings, J. Austral. Math. Soc. (Series A) 44 (1988), 88-104. (1988) Zbl0653.54015MR0914406
  5. Aull C.E., On well-embedding, General Topology and Applications (Middletown, CT, 1988), pp.1-5; Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990. Zbl0721.54009MR1057621
  6. Bella A., Yaschenko I.V., Lindelöf property and absolute embeddings, Proc. Amer. Math. Soc. 127 (1999), 907-913. (1999) Zbl0907.54003MR1469399
  7. Blair R.L., On υ -embedded sets in topological spaces, TOPO 72 - General Topology and its Applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), pp.46-79; Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974. MR0358677
  8. Blair R.L., Hager A.W., Extensions of zero-sets and of real-valued functions, Math. Z. 136 (1974), 41-52. (1974) Zbl0264.54011MR0385793
  9. Doss R., On uniform spaces with a unique structure, Amer. J. Math. 71 (1949), 19-23. (1949) Zbl0032.12202MR0029153
  10. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  11. Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, Princeton, 1960. Zbl0327.46040MR0116199
  12. Hager A.W., Johnson D.G., A note on certain subalgebras of C ( X ) , Canad. J. Math. 20 (1968), 389-393. (1968) MR0222647
  13. Henriksen M., Johnson D.G., On the structure of a class of archimedian lattice-ordered algebras, Fund. Math. 50 (1961), 73-94. (1961) MR0133698
  14. Hewitt E., A note on extensions of continuous functions, An. Acad. Brasil. Ci. 21 (1949), 175-179. (1949) MR0031711
  15. Noble N., C -embedded subsets of products, Proc. Amer. Math. Soc. 31 (1972), 613-614. (1972) Zbl0231.54011MR0284978
  16. Smirnov Y., Mappings of systems of open sets (in Russian), Mat. Sb. 31 (1952), 152-166. (1952) MR0050263
  17. Terada T., Note on z -, C * -, and C -embedding, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A. 13 (1975), 129-132. (1975) Zbl0333.54008MR0391005
  18. Yajima Y., Characterizations of paracompactness and Lindelöfness by separation property, preprint. MR1948123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.