On nonresonance impulsive functional nonconvex valued differential inclusions
Mouffak Benchohra; Johnny Henderson; Sotiris K. Ntouyas
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 4, page 595-604
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBenchohra, Mouffak, Henderson, Johnny, and Ntouyas, Sotiris K.. "On nonresonance impulsive functional nonconvex valued differential inclusions." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 595-604. <http://eudml.org/doc/248964>.
@article{Benchohra2002,
abstract = {In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.},
author = {Benchohra, Mouffak, Henderson, Johnny, Ntouyas, Sotiris K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {impulsive functional differential inclusions; nonresonance problem; fixed point; Banach space; impulsive functional differential inclusions; nonresonance problems; fixed point; Banach space},
language = {eng},
number = {4},
pages = {595-604},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On nonresonance impulsive functional nonconvex valued differential inclusions},
url = {http://eudml.org/doc/248964},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Benchohra, Mouffak
AU - Henderson, Johnny
AU - Ntouyas, Sotiris K.
TI - On nonresonance impulsive functional nonconvex valued differential inclusions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 595
EP - 604
AB - In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.
LA - eng
KW - impulsive functional differential inclusions; nonresonance problem; fixed point; Banach space; impulsive functional differential inclusions; nonresonance problems; fixed point; Banach space
UR - http://eudml.org/doc/248964
ER -
References
top- Bainov D.D., Simeonov P.S., Systems with Impulse Effect, Ellis Horwood Ltd., Chichister, 1989. Zbl0714.34083MR1010418
- Benchohra M., Eloe P., On nonresonance impulsive functional differential equations with periodic boundary conditions, Appl. Math. E.-Notes 1 (2001), 65-72. (2001) Zbl0983.34077MR1833839
- Benchohra MK., Henderson J., Ntouyas S.K., On nonresonance impulsive functional differential inclusions with periodic boundary conditions, Intern. J. Appl. Math. 5 (4) (2001), 377-391. (2001) Zbl1038.34083MR1852836
- Benchohra M., Henderson J., Ntouyas S.K., On nonresonance second order impulsive functional differential inclusions with nonlinear boundary conditions, Canad. Appl. Math. Quart., in press. Zbl1146.34055
- Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0346.46038MR0467310
- Covitz H., Nadler S.B., Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. (1970) MR0263062
- Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin-New York, 1992. Zbl0820.34009MR1189795
- Dong Y., Periodic boundary value problems for functional differential equations with impulses, J. Math. Anal. Appl. 210 (1997), 170-181. (1997) Zbl0878.34059MR1449515
- Gorniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999. Zbl1107.55001MR1748378
- Hu Sh., Papageorgiou N., Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997. Zbl0887.47001MR1485775
- Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. Zbl0719.34002MR1082551
- Nieto J.J., Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl. 205 (1997), 423-433. (1997) Zbl0870.34009MR1428357
- Samoilenko A.M., Perestyuk N.A., Impulsive Differential Equations, World Scientific, Singapore, 1995. MR1355787
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.