Abelian complex structures on 6-dimensional compact nilmanifolds
Luis A. Cordero; Marisa Fernández; Luis Ugarte
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 2, page 215-229
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCordero, Luis A., Fernández, Marisa, and Ugarte, Luis. "Abelian complex structures on 6-dimensional compact nilmanifolds." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 215-229. <http://eudml.org/doc/248969>.
@article{Cordero2002,
abstract = {We classify the $6$-dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure $J$ we describe the space of symplectic forms which are compatible with $J$.},
author = {Cordero, Luis A., Fernández, Marisa, Ugarte, Luis},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nilpotent Lie algebras; abelian complex structures; symplectic forms; nilpotent Lie algebras; abelian complex structures; symplectic forms},
language = {eng},
number = {2},
pages = {215-229},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Abelian complex structures on 6-dimensional compact nilmanifolds},
url = {http://eudml.org/doc/248969},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Cordero, Luis A.
AU - Fernández, Marisa
AU - Ugarte, Luis
TI - Abelian complex structures on 6-dimensional compact nilmanifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 215
EP - 229
AB - We classify the $6$-dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure $J$ we describe the space of symplectic forms which are compatible with $J$.
LA - eng
KW - nilpotent Lie algebras; abelian complex structures; symplectic forms; nilpotent Lie algebras; abelian complex structures; symplectic forms
UR - http://eudml.org/doc/248969
ER -
References
top- Barberis M.L., Dotti Miatello I.G., Miatello R.J., On certain locally homogeneous Clifford manifolds, Ann. Glob. Anal. Geom. 13 (1995), 289-301. (1995) Zbl0832.53039MR1344484
- Benson C., Gordon C.S., Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. (1988) Zbl0672.53036MR0976592
- Cordero L.A., Fernández M., Gray A., Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. (1986) MR0842431
- Cordero L.A., Fernández M., Gray A., Ugarte L., Nilpotent complex structures on compact nilmanifolds, Rend. Circolo Mat. Palermo 49 suppl. (1997), 83-100. (1997) MR1602971
- Cordero L.A., Fernández M., Gray A., Ugarte L., Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405-5433. (2000) MR1665327
- Cordero L.A., Fernández M., de León M., Compact locally conformal Kähler nilmanifolds, Geom. Dedicata 21 (1986), 187-192. (1986) MR0861196
- Cordero L.A., Fernández M., Ugarte L., Lefschetz complex conditions for complex manifolds, preprint, 2001. MR1935862
- Hasegawa K., Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71. (1989) Zbl0691.53040MR0946638
- Magnin L., Sur les algèbres de Lie nilpotentes de dimension , J. Geom. Phys. 3 (1986), 119-144. (1986) MR0855573
- Mal'cev A.I., On a class of homogeneous spaces, Amer. Math. Soc. Transl., no. 39 (1951). MR0039734
- Morosov V., Classification of nilpotent Lie algebras of order , Izv. Vyssh. Uchebn. Zaved. Mat. 4 (1958), 161-171. (1958) MR0130326
- Nomizu K., On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. (1954) Zbl0058.02202MR0064057
- Salamon S., Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333. (2001) Zbl1020.17006MR1812058
- Tralle A., Oprea J., Symplectic manifolds with no Kähler structure, Lecture Notes in Math. 1661, Springer, 1997. Zbl0891.53001MR1465676
- Wang H.C., Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776. (1954) MR0074064
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.