Abelian complex structures on 6-dimensional compact nilmanifolds

Luis A. Cordero; Marisa Fernández; Luis Ugarte

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 2, page 215-229
  • ISSN: 0010-2628

Abstract

top
We classify the 6 -dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure J we describe the space of symplectic forms which are compatible with J .

How to cite

top

Cordero, Luis A., Fernández, Marisa, and Ugarte, Luis. "Abelian complex structures on 6-dimensional compact nilmanifolds." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 215-229. <http://eudml.org/doc/248969>.

@article{Cordero2002,
abstract = {We classify the $6$-dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure $J$ we describe the space of symplectic forms which are compatible with $J$.},
author = {Cordero, Luis A., Fernández, Marisa, Ugarte, Luis},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nilpotent Lie algebras; abelian complex structures; symplectic forms; nilpotent Lie algebras; abelian complex structures; symplectic forms},
language = {eng},
number = {2},
pages = {215-229},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Abelian complex structures on 6-dimensional compact nilmanifolds},
url = {http://eudml.org/doc/248969},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Cordero, Luis A.
AU - Fernández, Marisa
AU - Ugarte, Luis
TI - Abelian complex structures on 6-dimensional compact nilmanifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 215
EP - 229
AB - We classify the $6$-dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure $J$ we describe the space of symplectic forms which are compatible with $J$.
LA - eng
KW - nilpotent Lie algebras; abelian complex structures; symplectic forms; nilpotent Lie algebras; abelian complex structures; symplectic forms
UR - http://eudml.org/doc/248969
ER -

References

top
  1. Barberis M.L., Dotti Miatello I.G., Miatello R.J., On certain locally homogeneous Clifford manifolds, Ann. Glob. Anal. Geom. 13 (1995), 289-301. (1995) Zbl0832.53039MR1344484
  2. Benson C., Gordon C.S., Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. (1988) Zbl0672.53036MR0976592
  3. Cordero L.A., Fernández M., Gray A., Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. (1986) MR0842431
  4. Cordero L.A., Fernández M., Gray A., Ugarte L., Nilpotent complex structures on compact nilmanifolds, Rend. Circolo Mat. Palermo 49 suppl. (1997), 83-100. (1997) MR1602971
  5. Cordero L.A., Fernández M., Gray A., Ugarte L., Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405-5433. (2000) MR1665327
  6. Cordero L.A., Fernández M., de León M., Compact locally conformal Kähler nilmanifolds, Geom. Dedicata 21 (1986), 187-192. (1986) MR0861196
  7. Cordero L.A., Fernández M., Ugarte L., Lefschetz complex conditions for complex manifolds, preprint, 2001. MR1935862
  8. Hasegawa K., Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71. (1989) Zbl0691.53040MR0946638
  9. Magnin L., Sur les algèbres de Lie nilpotentes de dimension 7 , J. Geom. Phys. 3 (1986), 119-144. (1986) MR0855573
  10. Mal'cev A.I., On a class of homogeneous spaces, Amer. Math. Soc. Transl., no. 39 (1951). MR0039734
  11. Morosov V., Classification of nilpotent Lie algebras of order 6 , Izv. Vyssh. Uchebn. Zaved. Mat. 4 (1958), 161-171. (1958) MR0130326
  12. Nomizu K., On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. (1954) Zbl0058.02202MR0064057
  13. Salamon S., Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311-333. (2001) Zbl1020.17006MR1812058
  14. Tralle A., Oprea J., Symplectic manifolds with no Kähler structure, Lecture Notes in Math. 1661, Springer, 1997. Zbl0891.53001MR1465676
  15. Wang H.C., Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776. (1954) MR0074064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.