Holomorphic subordinated semigroups
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 3, page 457-466
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topSaddi, Adel. "Holomorphic subordinated semigroups." Commentationes Mathematicae Universitatis Carolinae 43.3 (2002): 457-466. <http://eudml.org/doc/248978>.
@article{Saddi2002,
	abstract = {If $(e^\{-tA\})_\{t>0\}$ is a strongly continuous and contractive semigroup on a complex Banach space $B$, then $-(-A)^\alpha $, $0<\alpha <1$, generates a holomorphic semigroup on $B$. This was proved by K. Yosida in [7]. Using similar techniques, we present a class $H$ of Bernstein functions such that for all $f\in H$, the operator $-f(-A)$ generates a holomorphic semigroup.},
	author = {Saddi, Adel},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {holomorphic semigroup; Bernstein function; holomorphic semigroup; Bernstein function},
	language = {eng},
	number = {3},
	pages = {457-466},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Holomorphic subordinated semigroups},
	url = {http://eudml.org/doc/248978},
	volume = {43},
	year = {2002},
}
TY  - JOUR
AU  - Saddi, Adel
TI  - Holomorphic subordinated semigroups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 43
IS  - 3
SP  - 457
EP  - 466
AB  - If $(e^{-tA})_{t>0}$ is a strongly continuous and contractive semigroup on a complex Banach space $B$, then $-(-A)^\alpha $, $0<\alpha <1$, generates a holomorphic semigroup on $B$. This was proved by K. Yosida in [7]. Using similar techniques, we present a class $H$ of Bernstein functions such that for all $f\in H$, the operator $-f(-A)$ generates a holomorphic semigroup.
LA  - eng
KW  - holomorphic semigroup; Bernstein function; holomorphic semigroup; Bernstein function
UR  - http://eudml.org/doc/248978
ER  - 
References
top- Carasso A., Kato T., On subordinated holomorphic semigroups, Trans. Amer. Math. Soc. 327 2 (1991), 867-878. (1991) Zbl0743.47017MR1018572
 - Berg C., Forst G., Potential Theory on Locally Compact Abelian Groups, Springer Verlag, Ergebnisse der Mathematics, vol. 87, 1975. Zbl0308.31001MR0481057
 - Hirsch F., Domaines d'opérateurs représentés comme intégrales de résolvantes, J. Funct. Anal. 23 3 (1976), 199-217. (1976) Zbl0341.47013MR0428105
 - Jacob N., Schilling R.L., Subordination in the sense of S. Bochner: An approach through pseudo differential operators, Math. Nachr. 178 (1996), 199-231. (1996) Zbl0923.47023MR1380710
 - Lumer G., Paquet L., Semi-groupes holomorphes et équations d'évolution, C.R. Acad. Sci. Paris Série A 284 (1977), 237-240. (1977) Zbl0351.35013MR0428106
 - Paquet L., Semi-groupes holomorphes en norme sup, Séminaire de théorie du potentiel Paris, no. 4, Lecture Notes in Math. 713, 1979.
 - Yosida K., Functional Analysis, second edition, Springer Verlag, Berlin-Heidelberg-New York, 1968. MR0239384
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.