Weighted Miranda-Talenti inequality and applications to equations with discontinuous coefficients
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 1, page 43-59
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLeonardi, Salvatore. "Weighted Miranda-Talenti inequality and applications to equations with discontinuous coefficients." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 43-59. <http://eudml.org/doc/248992>.
@article{Leonardi2002,
abstract = {Let $\Omega $ be an open bounded set in $\mathbb \{R\}^\{n\}$$(n\ge 2)$, with $C^2$ boundary, and $N^\{p,\lambda \}(\Omega )$ ($1 < p < +\infty $, $0\le \lambda < n$) be a weighted Morrey space. In this note we prove a weighted version of the Miranda-Talenti inequality and we exploit it to show that, under a suitable condition of Cordes type, the Dirichlet problem: \[ \left\lbrace \begin\{array\}\{ll\}\sum \_\{i,j=1\}^n a\_\{ij\}(x) \frac\{\partial ^2 u\}\{\partial x\_i \partial x\_j\} = f(x) \in N^\{p,\lambda \}(\Omega ) \quad & \text\{ in \} \Omega \ u=0 & \text\{ on \} \partial \Omega \end\{array\}\right.\]
has a unique strong solution in the functional space \[ \left\lbrace u \in W^\{2,p\} \cap W^\{1,p\}\_o(\Omega ) : \frac\{\partial ^2 u\}\{\partial x\_i \partial x\_j\} \in N^\{p,\lambda \}(\Omega ), i,j=1,2,\,\ldots , n\right\rbrace . \]},
author = {Leonardi, Salvatore},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Miranda-Talenti inequality; nonvariational elliptic equations; Hölder regularity; Miranda-Talenti inequality; Hölder regularity; nonvariational elliptic equations},
language = {eng},
number = {1},
pages = {43-59},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weighted Miranda-Talenti inequality and applications to equations with discontinuous coefficients},
url = {http://eudml.org/doc/248992},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Leonardi, Salvatore
TI - Weighted Miranda-Talenti inequality and applications to equations with discontinuous coefficients
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 43
EP - 59
AB - Let $\Omega $ be an open bounded set in $\mathbb {R}^{n}$$(n\ge 2)$, with $C^2$ boundary, and $N^{p,\lambda }(\Omega )$ ($1 < p < +\infty $, $0\le \lambda < n$) be a weighted Morrey space. In this note we prove a weighted version of the Miranda-Talenti inequality and we exploit it to show that, under a suitable condition of Cordes type, the Dirichlet problem: \[ \left\lbrace \begin{array}{ll}\sum _{i,j=1}^n a_{ij}(x) \frac{\partial ^2 u}{\partial x_i \partial x_j} = f(x) \in N^{p,\lambda }(\Omega ) \quad & \text{ in } \Omega \ u=0 & \text{ on } \partial \Omega \end{array}\right.\]
has a unique strong solution in the functional space \[ \left\lbrace u \in W^{2,p} \cap W^{1,p}_o(\Omega ) : \frac{\partial ^2 u}{\partial x_i \partial x_j} \in N^{p,\lambda }(\Omega ), i,j=1,2,\,\ldots , n\right\rbrace . \]
LA - eng
KW - Miranda-Talenti inequality; nonvariational elliptic equations; Hölder regularity; Miranda-Talenti inequality; Hölder regularity; nonvariational elliptic equations
UR - http://eudml.org/doc/248992
ER -
References
top- Adams R.A., Sobolev Spaces, Academic Press Inc., Orlando, 1977. Zbl1098.46001
- Brezis H., Analisi Funzionale, Liguori Editore, Napoli, 1986.
- Campanato S., Maggiorazioni interpolatorie negli spazi , Ann. Mat. Pura Appl. Ser. IV LXXV (1967), 261-276. (1967) MR0216284
- Campanato S., Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale, Ann. Scuola. Norm. Sup. Pisa (III) XXI Fasc. IV (1967), 701-707. (1967) Zbl0157.42202MR0224996
- Campanato S., Non variational differential systems. A condition for local existence and uniqueness, Proceedings of the Caccioppoli Conference (1989), Ricerche di Matem., Suppl., XL (1991), 129-140. (1991) Zbl0796.35052MR1306303
- Campanato S., On the condition of nearness between operators, Ann. Mat. Pura Appl. Ser. IV CLXVII (1994), 243-256. (1994) Zbl0820.47050MR1313557
- Campanato S., Attuale formulazione della teoria degli operatori vicini e attuale definizione di operatore ellittico, Le Matematiche LI 2 (1996), 291-298. (1996)
- Campanato S., Cannarsa P., Second order nonvariational elliptic systems, Bollettino U.M.I. (5) 17-B (1980), 1365-1394. (1980) Zbl0449.35033MR0770854
- Coifman R.R., Fefferman C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. (1974) Zbl0291.44007MR0358205
- Cordes H.O., Über die erste Rundwertaufgabe bei quasi linearen Differential gleichungen zweiter Ordunung in mehr als zwei Variablen Math. Ann., 131 (1956), 278-312. (1956) MR0091400
- Cordes H.O., Vereinfachter Beweis der Existenz einer Apriori-Holderkonstanten, Math. Ann. 138 (1959), 155-178. (1959) MR0109256
- Cordes H.O., Zero order a priori estimates for solution of elliptic differential equations, Proc. of Symposia in Pure Math. IV, pp.157-166, 1961. MR0146511
- García-Cuerva J., Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, North Holland Math. Studies 116, Amsterdam, 1985. MR0848147
- Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies, vol. 105 Princeton University Press, Princeton, 1983. Zbl0516.49003MR0717034
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Second Edit., Springer Verlag, 1983. Zbl1042.35002MR0737190
- Giusti E., Sulla regolarità delle soluzioni di una classe di equazioni ellittiche, Rend. Sem. Matem. Univ. Padova XXXIX (1967), 362-375. (1967) Zbl0164.13302MR0226173
- Giusti E., Equazioni Ellittiche del Secondo Ordine, Pitagora Editrice, Bologna, 1978.
- Grisvard P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, 1985. Zbl0695.35060MR0775683
- Guglielmino F., Nuovi contributi allo studio delle equazioni paraboliche del secondo ordine di tipo non variazionale, Ricerche di Matem. 14 (1965), 124-144. (1965) Zbl0141.29301MR0201832
- Koshelev A.I., Regularity Problem for Quasilinear Elliptic and Parabolic Systems, Springer Verlag, 1995. Zbl0847.35023MR1442954
- Leonardi S., On the Campanato nearness condition, Le Matematiche 48.1 (1993), 179-181. (1993) Zbl0805.47067MR1283760
- Leonardi S., Remarks on the Regularity of Solutions of Elliptic Systems, Kluwer Academic/Plenum Publishers, pp.325-344, New York, 1999. Zbl0952.35034MR1727457
- Miranda C., Istituzioni di Analisi Funzionale Lineare, U.M.I. 1978. Zbl0697.46002
- Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384
- Muckenhoupt B., Whedeen R.L., Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249-258. (1971) MR0285938
- Murthy M.K.V., Stampacchia G., Boundary value problems for some degenerate-elliptic operators, Ann. Mat. Pura Appl. Ser. IV 80 (1968), 1-122. (1968) Zbl0185.19201MR0249828
- Nečas J., On the Regularity of Weak Solutions to Nonlinear Elliptic Systems of Partial Differential Equations, Lectures at Scuola Normale Sup. Pisa, 1979.
- Nicolosi F., Problemi parabolici in più variabili, Le Matematiche XXVII 1 (1972), 153-166. (1972) Zbl0264.35041MR0326173
- Pucci C., Equazioni ellittiche con soluzioni in , , Convegno sulle Equaz. alle Derivate Parziali, pp.145-148, Bologna, 1967. MR0271530
- Pucci C., Talenti G., Elliptic (second order) partial differential equations with measurable coefficients and approximating integral equations, Adv. Math. 19 1 (1976), 48-105. (1976) MR0419989
- Stein E.M., Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250-254. (1957) Zbl0077.27301MR0088606
- Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl0281.44003MR0290095
- Stein E.M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, 1993. Zbl0821.42001MR1232192
- Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, New Jersey, 1971. Zbl0232.42007MR0304972
- Talenti G., Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl. LXIX (1965), 285-304. (1965) Zbl0145.36602MR0201816
- Talenti G., Equazioni lineari ellittiche in due variabili, Le Matematiche XXI (1966), 339-376. (1966) Zbl0149.07402MR0204845
- Torchinsky A., Real-variable Methods in Harmonic Analysis, Academic Press Inc., Orlando, 1986. Zbl1097.42002MR0869816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.