On transitivity of pronormality

Leonid A. Kurdachenko; Igor Ya. Subbotin

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 4, page 583-594
  • ISSN: 0010-2628

Abstract

top
This article is dedicated to soluble groups, in which pronormality is a transitive relation. Complete description of such groups is obtained.

How to cite

top

Kurdachenko, Leonid A., and Subbotin, Igor Ya.. "On transitivity of pronormality." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 583-594. <http://eudml.org/doc/249000>.

@article{Kurdachenko2002,
abstract = {This article is dedicated to soluble groups, in which pronormality is a transitive relation. Complete description of such groups is obtained.},
author = {Kurdachenko, Leonid A., Subbotin, Igor Ya.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pronormal subgroups; transitive relations; pronormal subgroups; transitive pronormality},
language = {eng},
number = {4},
pages = {583-594},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On transitivity of pronormality},
url = {http://eudml.org/doc/249000},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Kurdachenko, Leonid A.
AU - Subbotin, Igor Ya.
TI - On transitivity of pronormality
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 583
EP - 594
AB - This article is dedicated to soluble groups, in which pronormality is a transitive relation. Complete description of such groups is obtained.
LA - eng
KW - pronormal subgroups; transitive relations; pronormal subgroups; transitive pronormality
UR - http://eudml.org/doc/249000
ER -

References

top
  1. Abramovskii I.N., Kargapolov M.I., Finite groups with the property of transitivity for normal subgroups, Uspekhi Mat. Nauk 13 (1958), 232-243. (1958) 
  2. Borevich Z.I., Polynormal subgroups, Darstellungstheorietage (Erfurt, 1992), pp.7-19, Sitzungsber. Mat.-Naturwiss. KI., 4 Acad. Gemein. Wiss. Erfurt, Erfurt, 1992. Zbl0807.20026MR1225383
  3. Ba M.S., Borevich Z.I., On arrangement of intermediate subgroups, Rings and Linear Groups, Kubansk. Univ., Krasnodar, 1988, pp.14-41. MR1206023
  4. Best E., Taussky O., A class of groups, Proc. Roy. Irish Acad. Sect. A 47 (1942), 55-62. (1942) Zbl0063.00359MR0006539
  5. Carter R.W., Nilpotent self-normalizing subgroups of soluble groups, Math. Z. 75 (1961), 136-139. (1961) Zbl0168.27301MR0123603
  6. Celentani M.R., On groups with many pronormal subgroups, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 2 685-691. (1991) Zbl0807.20033MR1150808
  7. Celentani M.R., Dardano U., Some sensitivity conditions for infinite groups, Rend. Mat. Appl. (7) 12 (1992), 4 997-1012. (1992) Zbl0774.20017MR1218600
  8. De Giovanni F., Vincenzi G., Groups satisfying the minimal condition on non-pronormal subgroups, Boll. Un. Mat. Ital. A (7) 9 (1995), 185-194. (1995) Zbl0837.20040MR1324619
  9. De Falco M., Kurdachenko L.A., Subbotin I.Ya., Groups with only abnormal and subnormal subgroups, Atti Sem. Mat. Fis. Univ. Modena 46 2 (1998), 435-442. (1998) Zbl0918.20017MR1665935
  10. Emaldi E., Sui T-gruppi loclmente finiti, Atti Istit. Lombardo (Rend. Sci.) A 121 (1987), 55-60. (1987) 
  11. Emaldi E., Confronto di alcule classi gruppali, Riv. Mat. Pura Appl. 5 (1989), 33-39. (1989) 
  12. Fatahi A., Groups with only normal and abnormal subgroups, J. Algebra 28 (1974), 15-19. (1974) MR0335628
  13. Fransiosi S., De Giovanni F., Groups in which every infinite subnormal subgroups is normal, J. Algebra 96 (1985), 566-580. (1985) MR0810546
  14. Gaschutz W., Gruppen in denen das Normalteilersein transitive ist, J. Reine Angew. Math. 198 (1957), 87-92. (1957) MR0091277
  15. Gavron P.V., Kolotilina N.Yu., On subgroups of T-groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 62-65. (1980) MR0618496
  16. Heineken H., Lennox J.C., Subgroups of finite index in T-groups, Boll. Un. Mat. Ital. B (6) 4 3 (1985), 829-841. (1985) Zbl0598.20027MR0831294
  17. Heineken H., Groups with restriction on their infinite subnormal subgroups, Proc. Edinburg Math. Soc. 31 (1988), 231-241. (1988) Zbl0644.20020MR0989756
  18. Kuzennyi N.F, Subbotin I.Ya., Locally soluble groups with the transitive condition for infinite nonabelian normal subgroups, Methods of Investigations of Algebraic and Topologic Structures, Kiev State Pedagogic University, Kiev, 1989, pp.45-52. 
  19. Kuzennyi N.F, Subbotin I.Ya., Groups in which all subgroups are pronormal, Ukrain. Mat. Zh. 39 (1987), 325-329; English translation: Ukrainian Math. J. 39 (1987), 251-254. (1987) MR0899498
  20. Kuzennyi N.F, Subbotin I.Ya., Groups with pronormal primary subgroups, Ukrain. Mat. Zh. 41 (1989), 323-327; English translation: Ukrainian Math. J. 41 (1989), 286-289. (1989) MR1001537
  21. Kuzennyi N.F, Subbotin I.Ya., New characterization of locally nilpotent ø v e r l i n e I H -groups, Ukrain. Mat. Zh. 40 (1988), 322-326; English translation: Ukrainian Math. J. 40 (1988), 274-277. (1988) MR0952119
  22. Kuzennyi N.F, Subbotin I.Ya., On nonsplittable group extensions, Studies of Groups with Restrictions on Subgroups, Inst. of Math. of Acad. Sci. Ukraine, Kiev, 1988, pp.27-33. MR0988170
  23. Menegazzo F., Gruppi nei quail la relazone di quasi-normalita e tranzitiva, Rend. Sem. Mat. Univ. Padova 40 (1968), 347-361. (1968) MR0228584
  24. Menegazzo F., Gruppi nei quail la relazone di quasi-normalita e tranzitiva II, Rend. Sem. Mat. Univ. Padova 42 (1969), 389-399. (1969) MR0257225
  25. Müller K.H., Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalizatorgleichen Untergruppen, Rend. Sem. Mat. Univ. Padova 36 (1966), 129-157. (1966) MR0204528
  26. Peng T.A., Pronormality in finite groups, J. London Math. Soc. (2) 3 (1971), 301-306. (1971) Zbl0209.05502MR0276319
  27. Robinson D.J.S., Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc. 60 (1964), 21-38. (1964) Zbl0123.24901MR0159885
  28. Robinson D.J.S., A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc. 19 (1968), 933-937. (1968) Zbl0159.31002MR0230808
  29. Robinson D.J.S., Groups which are minimal with respect to normality being transitive, Pacific J. Math. 31 (1969), 777-785. (1969) MR0258943
  30. Robinson D.J.S., Groups whose gomomorphic images have a transitive normality relation, Trans. Amer. Math. Soc. 176 (1973), 181-213. (1973) MR0323907
  31. Rose J.S., Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. (3) 17 (1967), 447-469. (1967) Zbl0153.03602MR0212092
  32. Subbotin I.Ya., Groups with pronormal subgroups of proper normal subgroups, in Proceedings of International Conference ``Infinite Groups 1994'', Walter der Gruyter, Berlin, 1995, pp.247-256. Zbl0866.20028MR1477182
  33. Subbotin I.Ya, Kuzennyi N.F., Locally solvable groups in which all infinite subgroups are pronormal, Izv. Vyssh. Ucheb. Zaved. Mat. 11 (1988), 77-79; English translation: Soviet. Math. 32 (1988), no. 11, 126-131. (1988) MR0983287
  34. Vincenzi G., Groups with dense pronormal subgroups, Ricerche Mat. XL (1991), 75-79. (1991) Zbl0754.20011MR1191887
  35. Vincenzi G., Groups satisfying the maximall condition on non-pronormal subgroups, Algebra Colloq. 5:2 (1998), 121-134. (1998) MR1682978
  36. Wood G.J., On pronormal subgroups of finite soluble groups, Arch. Math. 25 (1974), 578-585. (1974) Zbl0301.20011MR0379660
  37. Zacher G., Caratterizzazione dei t-gruppi finite risolubili, Ricerche Mat. 1 (1952), 287-294. (1952) MR0053104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.