Implicit Markov kernels in probability theory
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 3, page 547-564
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHlubinka, Daniel. "Implicit Markov kernels in probability theory." Commentationes Mathematicae Universitatis Carolinae 43.3 (2002): 547-564. <http://eudml.org/doc/249003>.
@article{Hlubinka2002,
abstract = {Having Polish spaces $\mathbb \{X\}$, $\mathbb \{Y\}$ and $\mathbb \{Z\}$ we shall discuss the existence of an $\mathbb \{X\} \times \mathbb \{Y\}$-valued random vector $(\xi ,\eta )$ such that its conditional distributions $\operatorname\{K\}_\{x\} = \mathcal \{L\}(\eta \mid \xi =x)$ satisfy $e(x, \operatorname\{K\}_\{x\}) = c(x)$ or $e(x,\operatorname\{K\}_\{x\}) \in C(x)$ for some maps $e:\mathbb \{X\}\times \mathcal \{M\}_1(\mathbb \{Y\}) \rightarrow \mathbb \{Z\}$, $c:\mathbb \{X\} \rightarrow \mathbb \{Z\}$ or multifunction $C:\mathbb \{X\} \rightarrow 2^\{\mathbb \{Z\}\}$ respectively. The problem is equivalent to the existence of universally measurable Markov kernel $\operatorname\{K\}:\mathbb \{X\} \rightarrow \mathcal \{M\}_1(\mathbb \{Y\})$ defined implicitly by $e(x, \operatorname\{K\}_\{x\}) = c(x)$ or $e(x,\operatorname\{K\}_\{x\}) \in C(x)$ respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the $(e,c)$- or $(e,C)$-problem and illustrate the theory on the generalized moment problem.},
author = {Hlubinka, Daniel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Markov kernels; universal measurability; selections; moment problems; extreme points; Markov kernels; selections; moment problems; extreme points},
language = {eng},
number = {3},
pages = {547-564},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Implicit Markov kernels in probability theory},
url = {http://eudml.org/doc/249003},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Hlubinka, Daniel
TI - Implicit Markov kernels in probability theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 3
SP - 547
EP - 564
AB - Having Polish spaces $\mathbb {X}$, $\mathbb {Y}$ and $\mathbb {Z}$ we shall discuss the existence of an $\mathbb {X} \times \mathbb {Y}$-valued random vector $(\xi ,\eta )$ such that its conditional distributions $\operatorname{K}_{x} = \mathcal {L}(\eta \mid \xi =x)$ satisfy $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ for some maps $e:\mathbb {X}\times \mathcal {M}_1(\mathbb {Y}) \rightarrow \mathbb {Z}$, $c:\mathbb {X} \rightarrow \mathbb {Z}$ or multifunction $C:\mathbb {X} \rightarrow 2^{\mathbb {Z}}$ respectively. The problem is equivalent to the existence of universally measurable Markov kernel $\operatorname{K}:\mathbb {X} \rightarrow \mathcal {M}_1(\mathbb {Y})$ defined implicitly by $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the $(e,c)$- or $(e,C)$-problem and illustrate the theory on the generalized moment problem.
LA - eng
KW - Markov kernels; universal measurability; selections; moment problems; extreme points; Markov kernels; selections; moment problems; extreme points
UR - http://eudml.org/doc/249003
ER -
References
top- Aubin J.-A., Frankowska H., Set-valued Analysis, Birkhäuser, Boston, 1990. Zbl1168.49014MR1048347
- Cohn D.L., Measure Theory, Birkhäuser, Boston, second edition, 1993. Zbl0860.28001MR1454121
- Kallenberg O., Foundations of modern probability, Probab. Appl., Springer Verlag, New York, 1997. Zbl0996.60001MR1464694
- Srivastava S.M., A Course on Borel Sets, Graduate Texts in Mathematics, vol. 180, Springer Verlag, New York, 1998. Zbl0903.28001MR1619545
- Štěpán J., Hlubinka D., Two-dimensional probabilities with a given conditional structure, Kybernetika 35(3) 367-381 (1999). (1999) MR1704672
- Štěpán J., How to construct a two-dimensional random vector with a given conditional structure, in: Viktor Beneš and Josef Štěpán, Eds, {Distribution with given marginals and moment problems}, 1997. MR1614669
- Topsøe F., Topology and Measure, Lecture Notes in Mathematics 133, Springer Verlag, Berlin, 1970. MR0422560
- Winkler G., Choquet Order and Simplices, Lecture Notes in Mathematics 1145, Springer Verlag, Berlin, 1985. Zbl0578.46010MR0808401
- Winkler G., Extreme points of moment sets, Mathematics of operational research 13(4) 581-587 (1988). (1988) Zbl0669.60009MR0971911
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.