Implicit Markov kernels in probability theory

Daniel Hlubinka

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 3, page 547-564
  • ISSN: 0010-2628

Abstract

top
Having Polish spaces 𝕏 , 𝕐 and we shall discuss the existence of an 𝕏 × 𝕐 -valued random vector ( ξ , η ) such that its conditional distributions K x = ( η ξ = x ) satisfy e ( x , K x ) = c ( x ) or e ( x , K x ) C ( x ) for some maps e : 𝕏 × 1 ( 𝕐 ) , c : 𝕏 or multifunction C : 𝕏 2 respectively. The problem is equivalent to the existence of universally measurable Markov kernel K : 𝕏 1 ( 𝕐 ) defined implicitly by e ( x , K x ) = c ( x ) or e ( x , K x ) C ( x ) respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the ( e , c ) - or ( e , C ) -problem and illustrate the theory on the generalized moment problem.

How to cite

top

Hlubinka, Daniel. "Implicit Markov kernels in probability theory." Commentationes Mathematicae Universitatis Carolinae 43.3 (2002): 547-564. <http://eudml.org/doc/249003>.

@article{Hlubinka2002,
abstract = {Having Polish spaces $\mathbb \{X\}$, $\mathbb \{Y\}$ and $\mathbb \{Z\}$ we shall discuss the existence of an $\mathbb \{X\} \times \mathbb \{Y\}$-valued random vector $(\xi ,\eta )$ such that its conditional distributions $\operatorname\{K\}_\{x\} = \mathcal \{L\}(\eta \mid \xi =x)$ satisfy $e(x, \operatorname\{K\}_\{x\}) = c(x)$ or $e(x,\operatorname\{K\}_\{x\}) \in C(x)$ for some maps $e:\mathbb \{X\}\times \mathcal \{M\}_1(\mathbb \{Y\}) \rightarrow \mathbb \{Z\}$, $c:\mathbb \{X\} \rightarrow \mathbb \{Z\}$ or multifunction $C:\mathbb \{X\} \rightarrow 2^\{\mathbb \{Z\}\}$ respectively. The problem is equivalent to the existence of universally measurable Markov kernel $\operatorname\{K\}:\mathbb \{X\} \rightarrow \mathcal \{M\}_1(\mathbb \{Y\})$ defined implicitly by $e(x, \operatorname\{K\}_\{x\}) = c(x)$ or $e(x,\operatorname\{K\}_\{x\}) \in C(x)$ respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the $(e,c)$- or $(e,C)$-problem and illustrate the theory on the generalized moment problem.},
author = {Hlubinka, Daniel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Markov kernels; universal measurability; selections; moment problems; extreme points; Markov kernels; selections; moment problems; extreme points},
language = {eng},
number = {3},
pages = {547-564},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Implicit Markov kernels in probability theory},
url = {http://eudml.org/doc/249003},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Hlubinka, Daniel
TI - Implicit Markov kernels in probability theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 3
SP - 547
EP - 564
AB - Having Polish spaces $\mathbb {X}$, $\mathbb {Y}$ and $\mathbb {Z}$ we shall discuss the existence of an $\mathbb {X} \times \mathbb {Y}$-valued random vector $(\xi ,\eta )$ such that its conditional distributions $\operatorname{K}_{x} = \mathcal {L}(\eta \mid \xi =x)$ satisfy $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ for some maps $e:\mathbb {X}\times \mathcal {M}_1(\mathbb {Y}) \rightarrow \mathbb {Z}$, $c:\mathbb {X} \rightarrow \mathbb {Z}$ or multifunction $C:\mathbb {X} \rightarrow 2^{\mathbb {Z}}$ respectively. The problem is equivalent to the existence of universally measurable Markov kernel $\operatorname{K}:\mathbb {X} \rightarrow \mathcal {M}_1(\mathbb {Y})$ defined implicitly by $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the $(e,c)$- or $(e,C)$-problem and illustrate the theory on the generalized moment problem.
LA - eng
KW - Markov kernels; universal measurability; selections; moment problems; extreme points; Markov kernels; selections; moment problems; extreme points
UR - http://eudml.org/doc/249003
ER -

References

top
  1. Aubin J.-A., Frankowska H., Set-valued Analysis, Birkhäuser, Boston, 1990. Zbl1168.49014MR1048347
  2. Cohn D.L., Measure Theory, Birkhäuser, Boston, second edition, 1993. Zbl0860.28001MR1454121
  3. Kallenberg O., Foundations of modern probability, Probab. Appl., Springer Verlag, New York, 1997. Zbl0996.60001MR1464694
  4. Srivastava S.M., A Course on Borel Sets, Graduate Texts in Mathematics, vol. 180, Springer Verlag, New York, 1998. Zbl0903.28001MR1619545
  5. Štěpán J., Hlubinka D., Two-dimensional probabilities with a given conditional structure, Kybernetika 35(3) 367-381 (1999). (1999) MR1704672
  6. Štěpán J., How to construct a two-dimensional random vector with a given conditional structure, in: Viktor Beneš and Josef Štěpán, Eds, {Distribution with given marginals and moment problems}, 1997. MR1614669
  7. Topsøe F., Topology and Measure, Lecture Notes in Mathematics 133, Springer Verlag, Berlin, 1970. MR0422560
  8. Winkler G., Choquet Order and Simplices, Lecture Notes in Mathematics 1145, Springer Verlag, Berlin, 1985. Zbl0578.46010MR0808401
  9. Winkler G., Extreme points of moment sets, Mathematics of operational research 13(4) 581-587 (1988). (1988) Zbl0669.60009MR0971911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.