The Jordan normal form of higher order Osserman algebraic curvature tensors

Peter Gilkey; Raina Ivanova

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 2, page 231-242
  • ISSN: 0010-2628

Abstract

top
We construct new examples of algebraic curvature tensors so that the Jordan normal form of the higher order Jacobi operator is constant on the Grassmannian of subspaces of type ( r , s ) in a vector space of signature ( p , q ) . We then use these examples to establish some results concerning higher order Osserman and higher order Jordan Osserman algebraic curvature tensors.

How to cite

top

Gilkey, Peter, and Ivanova, Raina. "The Jordan normal form of higher order Osserman algebraic curvature tensors." Commentationes Mathematicae Universitatis Carolinae 43.2 (2002): 231-242. <http://eudml.org/doc/249007>.

@article{Gilkey2002,
abstract = {We construct new examples of algebraic curvature tensors so that the Jordan normal form of the higher order Jacobi operator is constant on the Grassmannian of subspaces of type $(r,s)$ in a vector space of signature $(p,q)$. We then use these examples to establish some results concerning higher order Osserman and higher order Jordan Osserman algebraic curvature tensors.},
author = {Gilkey, Peter, Ivanova, Raina},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {higher order Jacobi operator; Osserman algebraic curvature tensors; Jordan Osserman algebraic curvature tensors; higher order Jacobi operator; Osserman algebraic curvature tensors; Jordan Osserman algebraic curvature tensors},
language = {eng},
number = {2},
pages = {231-242},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The Jordan normal form of higher order Osserman algebraic curvature tensors},
url = {http://eudml.org/doc/249007},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Gilkey, Peter
AU - Ivanova, Raina
TI - The Jordan normal form of higher order Osserman algebraic curvature tensors
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 2
SP - 231
EP - 242
AB - We construct new examples of algebraic curvature tensors so that the Jordan normal form of the higher order Jacobi operator is constant on the Grassmannian of subspaces of type $(r,s)$ in a vector space of signature $(p,q)$. We then use these examples to establish some results concerning higher order Osserman and higher order Jordan Osserman algebraic curvature tensors.
LA - eng
KW - higher order Jacobi operator; Osserman algebraic curvature tensors; Jordan Osserman algebraic curvature tensors; higher order Jacobi operator; Osserman algebraic curvature tensors; Jordan Osserman algebraic curvature tensors
UR - http://eudml.org/doc/249007
ER -

References

top
  1. Blažić N., Bokan N., Gilkey P., A note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), 227-230. (1997) MR1426003
  2. Blažić N., Bokan N., Gilkey P., Rakić Z., Pseudo-Riemannian Osserman manifolds, J. Balkan Society of Geometers l2 (1997), 1-12. (1997) MR1662081
  3. Bonome A., Castro R., García-Río E., Hervella L., Vázquez-Lorenzo R., Nonsymmetric Osserman indefinite Kähler manifolds, Proc. Amer. Math. Soc. 126 (1998), 2763-2769. (1998) MR1476121
  4. Chi Q.-S., A curvature characterization of certain locally rank-one symmetric spaces, J. Differential Geom. 28 (1988), 187-202. (1988) Zbl0654.53053MR0961513
  5. Dotti I., Druetta M., Negatively curved homogeneous Osserman spaces, Differential Geom. Appl. 11 (1999), 163-178. (1999) Zbl0970.53031MR1712119
  6. García-Rió E., Kupeli D., Vázquez-Abal M.E., On a problem of Osserman in Lorentzian geometry, Differential Geom. Appl. 7 (1997), 85-100. (1997) MR1441921
  7. García-Rió E., Vázquez-Abal M.E., Vázquez-Lorenzo R., Nonsymmetric Osserman pseudo-Riemannian manifolds, Proc. Amer. Math. Soc. 126 (1998),2771-2778. (1998) MR1476128
  8. Gilkey P., Manifolds whose curvature operator has constant eigenvalues at the basepoint, J. Geom. Anal. 4 (1994), 155-158. (1994) Zbl0797.53010MR1277503
  9. Gilkey P., Algebraic curvature tensors which are p Osserman, to appear in Differential Geom. Appl. Zbl1031.53034MR1836275
  10. Gilkey P., Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, 2002. Zbl1007.53001MR1877530
  11. Gilkey P., Ivanova R., The Jordan normal form of Osserman algebraic curvature tensors, Results Math. 40 (2001), 192-204. (2001) Zbl0999.53014MR1860368
  12. Gilkey P., Stavrov I., Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors, Bull. London Math. Soc., to appear. Zbl1043.53018MR1924351
  13. Gilkey P., Stanilov G., Videv V., Pseudo-Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial, J. Geom. 62 (1998), 144-153. (1998) Zbl0906.53046MR1631494
  14. Gilkey P., Swann A., Vanhecke L., Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi operator, Quart. J. Math. Oxford Ser. 46 (1995), 299-320. (1995) MR1348819
  15. Osserman R., Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731-756. (1990) Zbl0722.53001MR1072814
  16. Stanilov G., Curvature operators based on the skew-symmetric curvature operator and their place in Differential Geometry, preprint, 2000. 
  17. Stanilov G., Videv V., On Osserman conjecture by characteristical coefficients, Algebras Groups Geom. 12 (1995), 157-163. (1995) Zbl0827.53042MR1325979
  18. Stanilov G., Videv V., Four-dimensional pointwise Osserman manifolds, Abh. Math. Sem. Univ. Hamburg 68 (1998), 1-6. (1998) Zbl0980.53058MR1658408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.