The Jordan normal form of higher order Osserman algebraic curvature tensors
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 2, page 231-242
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Blažić N., Bokan N., Gilkey P., A note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), 227-230. (1997) MR1426003
- Blažić N., Bokan N., Gilkey P., Rakić Z., Pseudo-Riemannian Osserman manifolds, J. Balkan Society of Geometers l2 (1997), 1-12. (1997) MR1662081
- Bonome A., Castro R., García-Río E., Hervella L., Vázquez-Lorenzo R., Nonsymmetric Osserman indefinite Kähler manifolds, Proc. Amer. Math. Soc. 126 (1998), 2763-2769. (1998) MR1476121
- Chi Q.-S., A curvature characterization of certain locally rank-one symmetric spaces, J. Differential Geom. 28 (1988), 187-202. (1988) Zbl0654.53053MR0961513
- Dotti I., Druetta M., Negatively curved homogeneous Osserman spaces, Differential Geom. Appl. 11 (1999), 163-178. (1999) Zbl0970.53031MR1712119
- García-Rió E., Kupeli D., Vázquez-Abal M.E., On a problem of Osserman in Lorentzian geometry, Differential Geom. Appl. 7 (1997), 85-100. (1997) MR1441921
- García-Rió E., Vázquez-Abal M.E., Vázquez-Lorenzo R., Nonsymmetric Osserman pseudo-Riemannian manifolds, Proc. Amer. Math. Soc. 126 (1998),2771-2778. (1998) MR1476128
- Gilkey P., Manifolds whose curvature operator has constant eigenvalues at the basepoint, J. Geom. Anal. 4 (1994), 155-158. (1994) Zbl0797.53010MR1277503
- Gilkey P., Algebraic curvature tensors which are Osserman, to appear in Differential Geom. Appl. Zbl1031.53034MR1836275
- Gilkey P., Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor, World Scientific, 2002. Zbl1007.53001MR1877530
- Gilkey P., Ivanova R., The Jordan normal form of Osserman algebraic curvature tensors, Results Math. 40 (2001), 192-204. (2001) Zbl0999.53014MR1860368
- Gilkey P., Stavrov I., Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors, Bull. London Math. Soc., to appear. Zbl1043.53018MR1924351
- Gilkey P., Stanilov G., Videv V., Pseudo-Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial, J. Geom. 62 (1998), 144-153. (1998) Zbl0906.53046MR1631494
- Gilkey P., Swann A., Vanhecke L., Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi operator, Quart. J. Math. Oxford Ser. 46 (1995), 299-320. (1995) MR1348819
- Osserman R., Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731-756. (1990) Zbl0722.53001MR1072814
- Stanilov G., Curvature operators based on the skew-symmetric curvature operator and their place in Differential Geometry, preprint, 2000.
- Stanilov G., Videv V., On Osserman conjecture by characteristical coefficients, Algebras Groups Geom. 12 (1995), 157-163. (1995) Zbl0827.53042MR1325979
- Stanilov G., Videv V., Four-dimensional pointwise Osserman manifolds, Abh. Math. Sem. Univ. Hamburg 68 (1998), 1-6. (1998) Zbl0980.53058MR1658408