Qualitative theory of half-linear second order differential equations

Ondřej Došlý

Mathematica Bohemica (2002)

  • Volume: 127, Issue: 2, page 181-195
  • ISSN: 0862-7959

Abstract

top
Some recent results concerning properties of solutions of the half-linear second order differential equation ( r ( t ) Φ ( x ' ) ) ' + c ( t ) Φ ( x ) = 0 , Φ ( x ) : = | x | p - 2 x , p > 1 , ( * ) are presented. A particular attention is paid to the oscillation theory of ( * ) . Related problems are also discussed.

How to cite

top

Došlý, Ondřej. "Qualitative theory of half-linear second order differential equations." Mathematica Bohemica 127.2 (2002): 181-195. <http://eudml.org/doc/249043>.

@article{Došlý2002,
abstract = {Some recent results concerning properties of solutions of the half-linear second order differential equation \[ (r(t)\Phi (x^\{\prime \}))^\{\prime \}+c(t)\Phi (x)=0,\quad \Phi (x):=|x|^\{p-2\}x,\quad p>1, \qquad \mathrm \{\{(*)\}\}\] are presented. A particular attention is paid to the oscillation theory of $(*)$. Related problems are also discussed.},
author = {Došlý, Ondřej},
journal = {Mathematica Bohemica},
keywords = {half-linear equation; Picone’s identity; scalar $p$-Laplacian; variational method; Riccati technique; principal solution; half-linear equation; Picone's identity; scalar -Laplacian; variational method; Riccati technique; principal solution},
language = {eng},
number = {2},
pages = {181-195},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Qualitative theory of half-linear second order differential equations},
url = {http://eudml.org/doc/249043},
volume = {127},
year = {2002},
}

TY - JOUR
AU - Došlý, Ondřej
TI - Qualitative theory of half-linear second order differential equations
JO - Mathematica Bohemica
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 127
IS - 2
SP - 181
EP - 195
AB - Some recent results concerning properties of solutions of the half-linear second order differential equation \[ (r(t)\Phi (x^{\prime }))^{\prime }+c(t)\Phi (x)=0,\quad \Phi (x):=|x|^{p-2}x,\quad p>1, \qquad \mathrm {{(*)}}\] are presented. A particular attention is paid to the oscillation theory of $(*)$. Related problems are also discussed.
LA - eng
KW - half-linear equation; Picone’s identity; scalar $p$-Laplacian; variational method; Riccati technique; principal solution; half-linear equation; Picone's identity; scalar -Laplacian; variational method; Riccati technique; principal solution
UR - http://eudml.org/doc/249043
ER -

References

top
  1. Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, M. Dekker, New York, 2000. (2000) Zbl0952.39001MR1740241
  2. 10.1016/S0362-546X(97)00530-0, Nonlin. Anal. 32 (1998), 819–830. (1998) MR1618334DOI10.1016/S0362-546X(97)00530-0
  3. 10.1006/jdeq.1998.3596, J. Differ. Equations 156 (1999), 427–438. (1999) MR1705379DOI10.1006/jdeq.1998.3596
  4. On the second order half-linear differential equation, Studia Sci. Math. Hungar. 3 (1968), 411–437. (1968) Zbl0167.37403MR0267190
  5. An oscillation theorem concerning the half-linear differential equation of the second order, Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 275–279. (1963) MR0171959
  6. Lineare Differentialtransformationen 2, Ordnung, Deutscher Verlag der Wissenschaften, Berlin, 1961. (1961) 
  7. On nonoscillatory solutions of differential equations with p -Laplacian, Advances Math. Sci. Appl. 11 (2001), 419–436. (2001) MR1842385
  8. Minimal sets for quasilinear differential equations, Submitted. 
  9. 10.1016/0022-0396(92)90027-K, J. Differ. Equations 99 (1992), 381–399. (1992) MR1184060DOI10.1016/0022-0396(92)90027-K
  10. 10.1006/jdeq.1999.3645, J. Differ. Equations 159 (1999), 212–238. (1999) MR1726923DOI10.1006/jdeq.1999.3645
  11. Nonlinear Partial Differential Equations and Free Boundaries. Vol I, Elliptic Equations, Pitman, London, 1985. (1985) MR0853732
  12. 10.32917/hmj/1206126680, Hiroshima J. Math. 28 (1998), 507–521. (1998) MR1657543DOI10.32917/hmj/1206126680
  13. A remark on conjugacy of half-linear second order differential equations, Math. Slovaca 50 (2000), 67–79. (2000) MR1764346
  14. 10.1023/A:1022854131381, Czechoslovak Math. J. 50 (2000), 657–671. (2000) MR1777486DOI10.1023/A:1022854131381
  15. Half-linear oscillation theory, Studies Univ. Žilina, Math.-Phys. Ser. 13 (2001), 65–73. (2001) Zbl1040.34040MR1874005
  16. Integral characterization of principal solution of half-linear differential equations, Studia Sci. Math. Hungar. 36 (2000), 455–469. (2000) MR1798750
  17. Oscillation and nonoscillation criteria for half-linear second order differential equations, Submitted. 
  18. 10.1023/A:1006739909182, Acta Math. Hungar. 90 (2001), 89–107. (2001) MR1910321DOI10.1023/A:1006739909182
  19. Regular half-linear second order differential equations, Submitted. 
  20. Fredholm alternative for the p -Laplacian: yes or no? Function Spaces, Differential Operators and Nonlinear Analysis, Proceedings of the conference FSDONA-99, Syöte, Finland, June 10–16, 1999, Prague, Mustonen, Vesa at al (ed.), Mathematical Institute of the Academy of Sciences of the Czech Republic, 2000, pp. 57–64. (2000) MR1755297
  21. A half-linear second order differential equation, Colloq. Math. Soc. János Bolyai 30 (1979), 158–180. (1979) 
  22. The Wronskian and the half-linear differential equations, Studia Sci. Math. Hungar. 15 (1980), 101–105. (1980) Zbl0522.34034MR0681431
  23. 10.1007/BFb0064999, Lectures Notes Math. 964 (1982), 187–212. (1982) DOI10.1007/BFb0064999
  24. Asymptotic behaviour of autonomous half-linear differential systems on the plane, Studia Sci. Math. Hungar. 19 (1984), 447–464. (1984) Zbl0629.34066MR0874513
  25. Principal solutions of nonoscillatory half-linear differential equations, Advances Math. Sci. Appl. 18 (1998), 745–759. (1998) 
  26. Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kosmologie und metheorologische Probleme, Leibzig, 1907. (1907) 
  27. 10.1093/mnras/91.1.63, Monthly Notices Roy. Astronom. Soc. 91 (1930), 63–91. (1930) DOI10.1093/mnras/91.1.63
  28. Ordinary Differential Equations, John Wiley & Sons New York, 1964. (1964) Zbl0125.32102MR0171038
  29. A Picone type identity for half-linear differential equations, Acta Math. Univ. Comen. 68 (1999), 137–151. (1999) MR1711081
  30. 10.1016/S0362-546X(00)85023-3, Nonlin. Anal., Theory Methods Appl. 40 (2000), 381–395. (2000) MR1768900DOI10.1016/S0362-546X(00)85023-3
  31. Difference Equations: An Introduction with Applications, Acad. Press, San Diego, 1991. (1991) MR1142573
  32. 10.1007/BF02907054, Acta. Math. Hungar. 76 (1997), 81–99. (1997) MR1459772DOI10.1007/BF02907054
  33. Strong oscillation and nonoscillation of quasilinear differential equations of second order, Diff. Equations Dyn. Syst. 2 (1994), 1–10. (1994) MR1386034
  34. 10.32917/hmj/1206127634, Hiroshima Math. J. 25 (1995), 585–594. (1995) MR1364076DOI10.32917/hmj/1206127634
  35. 10.1016/0022-0396(78)90075-X, J. Differ. Equations 28 (1978), 1–17. (1978) MR0466748DOI10.1016/0022-0396(78)90075-X
  36. 10.1016/0022-247X(76)90120-7, J. Math. Anal. Appl. 53 (1976), 418–425. (1976) Zbl0327.34027MR0402184DOI10.1016/0022-247X(76)90120-7
  37. Principal and nonprincipal solutions of a nonoscillatory system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. (1988) MR1001343
  38. 10.1023/A:1013790713905, Czechoslovak Math. J. 51 (2001), 303–321. (2001) Zbl0982.39004MR1844312DOI10.1023/A:1013790713905
  39. Equazioni diferenziali nel campo reale I, II, Zanichelli, Bologna, 1949. (1949) MR0030663
  40. The calculation of atomic fields, Proc. Cambridge Phil. Soc. 23 (1927), 542–548. (1927) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.