The analytic continuation and the order estimate of multiple Dirichlet series
Kohji Matsumoto; Yoshio Tanigawa
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 1, page 267-274
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMatsumoto, Kohji, and Tanigawa, Yoshio. "The analytic continuation and the order estimate of multiple Dirichlet series." Journal de théorie des nombres de Bordeaux 15.1 (2003): 267-274. <http://eudml.org/doc/249090>.
@article{Matsumoto2003,
abstract = {Multiple Dirichlet series of several complex variables are considered. Using the Mellin-Barnes integral formula, we prove the analytic continuation and an upper bound estimate.},
author = {Matsumoto, Kohji, Tanigawa, Yoshio},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {multiple Dirichlet series},
language = {eng},
number = {1},
pages = {267-274},
publisher = {Université Bordeaux I},
title = {The analytic continuation and the order estimate of multiple Dirichlet series},
url = {http://eudml.org/doc/249090},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Matsumoto, Kohji
AU - Tanigawa, Yoshio
TI - The analytic continuation and the order estimate of multiple Dirichlet series
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 267
EP - 274
AB - Multiple Dirichlet series of several complex variables are considered. Using the Mellin-Barnes integral formula, we prove the analytic continuation and an upper bound estimate.
LA - eng
KW - multiple Dirichlet series
UR - http://eudml.org/doc/249090
ER -
References
top- [1] S. Akiyama, S. Egami, Y. Tanigawa, An analytic continuation of multiple zeta functions and their values at non-positive integers. Acta Arith.98 (2001), 107-116. Zbl0972.11085MR1831604
- [2] S. Akiyama, H. Ishikawa, On analytic continuation of multiple L-functions and related zeta-functions. In: Analytic number theory (Beijing/Kyoto, 1999), 1-16, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 2002 Zbl1028.11058MR1901971
- [3] T. Arakawa, M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J.153 (1999), 189-209. Zbl0932.11055MR1684557
- [4] T. Arakawa, M. Kaneko, On multiple L-values, in preparation.
- [5] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Letters5 (1998), 497-516. Zbl0961.11040MR1653320
- [6] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint. Zbl0919.11080
- [7] A. Good, The square mean of Dirichlet series associated with cusp forms. Mathematika29 (1982), 278-295. Zbl0497.10016MR696884
- [8] H. Ishikawa, On analytic properties of a multiple L-function. In: Analytic extension formulas and their applications (Fukuoka, 1999/Kyoto, 2000), 105-122, Int. Soc. Anal. Appl. Comput., 9, Kluwer Acad. Publ., Dordrecht, 2001. Zbl1020.11056MR1830380
- [9] H. Ishikawa, A multiple character sum and a multiple L-function. Arch. Math.79 (2002), 439-448. Zbl1034.11053MR1967262
- [10] K. Matsumoto, Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series. Nagoya Math. J., to appear. Zbl1060.11053MR2019520
- [11] K. Matsumoto, The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I. J. Number Theory, to appear. Zbl1083.11057MR1989886
- [12] K. Matsumoto, The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions II. In: Analytic and Probabilistic Methods in Number Theory, Proc. 3rd Intern. Conf. in Honour of J. Kubilius (Palanga, Lithuania, Sept 2001), 188-194, A. Dubickas et al. (eds.), TEV, Vilnius, 2002. Zbl1195.11119MR1964862
- [13] J. Zhao, Analytic continuation of multiple zeta functions. Proc. Amer. Math. Soc.128 (2000), 1275-1283. Zbl0949.11042MR1670846
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.