Stark's conjecture in multi-quadratic extensions, revisited

David S. Dummit; Jonathan W. Sands; Brett Tangedal

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 83-97
  • ISSN: 1246-7405

Abstract

top
Stark’s conjectures connect special units in number fields with special values of L -functions attached to these fields. We consider the fundamental equality of Stark’s refined conjecture for the case of an abelian Galois group, and prove it when this group has exponent 2 . For biquadratic extensions and most others, we prove more, establishing the conjecture in full.

How to cite

top

Dummit, David S., Sands, Jonathan W., and Tangedal, Brett. "Stark's conjecture in multi-quadratic extensions, revisited." Journal de théorie des nombres de Bordeaux 15.1 (2003): 83-97. <http://eudml.org/doc/249103>.

@article{Dummit2003,
abstract = {Stark’s conjectures connect special units in number fields with special values of $L$-functions attached to these fields. We consider the fundamental equality of Stark’s refined conjecture for the case of an abelian Galois group, and prove it when this group has exponent $2$. For biquadratic extensions and most others, we prove more, establishing the conjecture in full.},
author = {Dummit, David S., Sands, Jonathan W., Tangedal, Brett},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Stark's conjecture; Artin -functions; Abelian extensions; units; class field theory},
language = {eng},
number = {1},
pages = {83-97},
publisher = {Université Bordeaux I},
title = {Stark's conjecture in multi-quadratic extensions, revisited},
url = {http://eudml.org/doc/249103},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Dummit, David S.
AU - Sands, Jonathan W.
AU - Tangedal, Brett
TI - Stark's conjecture in multi-quadratic extensions, revisited
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 83
EP - 97
AB - Stark’s conjectures connect special units in number fields with special values of $L$-functions attached to these fields. We consider the fundamental equality of Stark’s refined conjecture for the case of an abelian Galois group, and prove it when this group has exponent $2$. For biquadratic extensions and most others, we prove more, establishing the conjecture in full.
LA - eng
KW - Stark's conjecture; Artin -functions; Abelian extensions; units; class field theory
UR - http://eudml.org/doc/249103
ER -

References

top
  1. [1] G. Janusz, Algebraic number fields. Academic Press, New York, 1973. Zbl0307.12001MR366864
  2. [2] J.W. Sands, Galois groups of exponent two and the Brumer-Stark conjecture. J. Reine Angew. Math.349 (1984), 129-135. Zbl0521.12009MR743968
  3. [3] J.W. Sands, Two cases of Stark's conjecture. Math. Ann.272 (1985), 349-359. Zbl0554.12006MR799666
  4. [4] H.M. Stark, L-functions at s = 1 IV. First derivatives at s = 0. Advances in Math.35 (1980), 197-235. Zbl0475.12018MR563924
  5. [5] J.T. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s = 0. Birkhäuser, Boston, 1984. Zbl0545.12009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.