Notes on an analogue of the Fontaine-Mazur conjecture

Jeffrey D. Achter; Joshua Holden

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 3, page 627-637
  • ISSN: 1246-7405

Abstract

top
We estimate the proportion of function fields satisfying certain conditions which imply a function field analogue of the Fontaine-Mazur conjecture. As a byproduct, we compute the fraction of abelian varieties (or even jacobians) over a finite field which have a rational point of order .

How to cite

top

Achter, Jeffrey D., and Holden, Joshua. "Notes on an analogue of the Fontaine-Mazur conjecture." Journal de théorie des nombres de Bordeaux 15.3 (2003): 627-637. <http://eudml.org/doc/249110>.

@article{Achter2003,
abstract = {We estimate the proportion of function fields satisfying certain conditions which imply a function field analogue of the Fontaine-Mazur conjecture. As a byproduct, we compute the fraction of abelian varieties (or even jacobians) over a finite field which have a rational point of order $\ell $.},
author = {Achter, Jeffrey D., Holden, Joshua},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {uniformly powerful pro- group; Equidistribution},
language = {eng},
number = {3},
pages = {627-637},
publisher = {Université Bordeaux I},
title = {Notes on an analogue of the Fontaine-Mazur conjecture},
url = {http://eudml.org/doc/249110},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Achter, Jeffrey D.
AU - Holden, Joshua
TI - Notes on an analogue of the Fontaine-Mazur conjecture
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 627
EP - 637
AB - We estimate the proportion of function fields satisfying certain conditions which imply a function field analogue of the Fontaine-Mazur conjecture. As a byproduct, we compute the fraction of abelian varieties (or even jacobians) over a finite field which have a rational point of order $\ell $.
LA - eng
KW - uniformly powerful pro- group; Equidistribution
UR - http://eudml.org/doc/249110
ER -

References

top
  1. [1] N. Boston, Some cases of the Fontaine-Mazur conjecture, II. J. Number Theory75 (1999), 161-169. Zbl0928.11050MR1681626
  2. [2] N. Chavdarov, The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy. Duke Math. J.87 (1997), 151-180. Zbl0941.14006MR1440067
  3. [3] A.J. De Jong, A conjecture on arithmetic fundamental groups. Israel J. Math.121 (2001), 61-84. Zbl1054.11032MR1818381
  4. [4] P. Deligne, La conjecture de Weil. II. Hautes Études Sci. Publ. Math.52 (1980), 137-252. Zbl0456.14014MR601520
  5. [5] P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math.36 (1969), 75-109. Zbl0181.48803MR262240
  6. [6] J. Dixon, M.P.F. Du Sautoy, A. Mann, D. Segal, Analytic Pro-p Groups. London Math. Soc. Lecture Note Series.157 (1991). Zbl0744.20002
  7. [7] T. Ekedahl, The action of monodromy on torsion points of Jacobians. Arithmetic algebraic geometry (Texel, 1989). BirkhäuserBoston (1991), 41-49. Zbl0728.14028MR1085255
  8. [8] J.-M. Fontaine, B. Mazur, Geometric Galois representations. J. Coates and S.-T. Yau, editors, Elliptic Curves, Modular Forms, & Fermat's Last Theorem, Series in Number Theory1 (1995), 41-78. Zbl0839.14011MR1363495
  9. [9] G. Frey, E. Kani, H. Völklein, Curves with infinite K-rational geometric fundamental group. H. Völklein, D. Harbater, P. Müller, and J. G. Thompson, editors, Aspects of Galois theory (Gainesville, FL, 1996), London Mathematical Society Lecture Note Series256, 85-118. Zbl0978.14021MR1708603
  10. [10] J. Holden, On the Fontaine-Mazur Conjecture for number fields and an analogue for function fields. J. Number Theory81 (2000), 16-47. Zbl0997.11096MR1743506
  11. [11] Y. Ihara, On unramified extensions of function fields over finite fields. Y. Ihara, editor, Galois Groups and Their Representations, Adv. Studies in Pure Math.2 (1983), 89-97. Zbl0542.14011MR732464
  12. [12] N.M. Katz, P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society, 1999. Zbl0958.11004MR1659828

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.