On the powerful part of
Archivum Mathematicum (2003)
- Volume: 039, Issue: 3, page 187-189
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPuchta, Jan-Christoph. "On the powerful part of $n^2+1$." Archivum Mathematicum 039.3 (2003): 187-189. <http://eudml.org/doc/249134>.
@article{Puchta2003,
abstract = {We show that $n^2+1$ is powerfull for $O(x^\{2/5+\epsilon \})$ integers $n\le x$ at most, thus answering a question of P. Ribenboim.},
author = {Puchta, Jan-Christoph},
journal = {Archivum Mathematicum},
keywords = {powerfull integer},
language = {eng},
number = {3},
pages = {187-189},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the powerful part of $n^2+1$},
url = {http://eudml.org/doc/249134},
volume = {039},
year = {2003},
}
TY - JOUR
AU - Puchta, Jan-Christoph
TI - On the powerful part of $n^2+1$
JO - Archivum Mathematicum
PY - 2003
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 039
IS - 3
SP - 187
EP - 189
AB - We show that $n^2+1$ is powerfull for $O(x^{2/5+\epsilon })$ integers $n\le x$ at most, thus answering a question of P. Ribenboim.
LA - eng
KW - powerfull integer
UR - http://eudml.org/doc/249134
ER -
References
top- Evertse J.-H., Silverman J. H., Uniform bounds for the number of solutions to , Math. Proc. Camb. Philos. Soc. 100 (1986), 237–248. (1986) MR0848850
- Heath-Brown D. R., Review 651.10012, Zentralblatt Mathematik 651, 41 (1989) (1989) MR1441325
- Mardjanichvili C., Estimation d’une somme arithmetique, Dokl. Acad. Sci. SSSR 22 (1939), 387–389. (1939) Zbl0021.20802
- Ribenboim P., Remarks on exponential congruences and powerful numbers, J. Number Theory 29 (1988), 251–263. (1988) Zbl0651.10012MR0955951
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.