Korn's First Inequality with variable coefficients and its generalization
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 1, page 57-70
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Besov O.V., On coercivity in nonisotropic Sobolev spaces, Math. USSR-Sbornik, vol. 2 (1967), no. 4, 521-534. Zbl0169.47101
- Calderón A.P., Zygmund A., On singular integrals, Amer. J. Math. 78 (1956), 289-309. (1956) MR0084633
- Chen W., Jost J., A Riemann version of Korn's Inequality, Calc. Var. (2001). (2001)
- Ciarlet P.G., Mathematical Elasticity, Volume I: Three-dimensional Elasticity, North-Holland, 1988. Zbl0648.73014MR0936420
- Kałamajska A., Coercive inequalities on weighted Sobolev spaces, Coll. Math. LXVI (1994), 309-318. (1994) MR1268073
- Maz'ya V.G., Sobolev Spaces, Springer, 1985. Zbl1152.46002MR0817985
- Mikhlin S.G., Multidimensional singular integrals and integral equations, Pergamon Press, 1965. Zbl0129.07701MR0185399
- Nečas J., Sur les normes équivalentes dans $W^{(k)}_p(Ømega)$ et sur la coercivité des formes formellement positives, Séminaire de mathématiques supérieures, 1965. Fasc. 19: Équations aux dérivées partielles (1966), 101-128.
- Nečas J., Hlaváček I., Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction, Elsevier Scientific Publishing Company, 1981. MR0600655
- Neff P., On Korn's First Inequality with nonconstant coefficients, Proc. Roy. Soc. Edinburgh 132A (2002), 221-243. (2002) MR1884478
- Neff P., A Korn's First Inequality with $W^{1,4}(Ømega)$-coefficients, preprint.
- Neff P., Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation, preprint. Zbl1072.74013MR2126571
Citations in EuDML Documents
top- Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis, FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity
- Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis, FETI-DP domain decomposition methods for elasticity with structural changes: -elasticity
- Josip Tambača, Igor Velčić, Semicontinuity theorem in the micropolar elasticity
- Josip Tambača, Igor Velčić, Existence theorem for nonlinear micropolar elasticity