Korn's First Inequality with variable coefficients and its generalization
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 1, page 57-70
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPompe, Waldemar. "Korn's First Inequality with variable coefficients and its generalization." Commentationes Mathematicae Universitatis Carolinae 44.1 (2003): 57-70. <http://eudml.org/doc/249158>.
@article{Pompe2003,
abstract = {If $\Omega \subset \mathbb \{R\}^n$ is a bounded domain with Lipschitz boundary $\partial \Omega $ and $\Gamma $ is an open subset of $\partial \Omega $, we prove that the following inequality \[ \biggl (\int \_\Omega |A(x)\nabla u(x)|^p\,dx\biggr )^\{1/p\} + \biggl (\int \_\Gamma |u(x)|^p\,d\mathcal \{H\}^\{n-1\}(x)\biggr )^\{1/p\} \ge c\, \Vert u\Vert \_\{W^\{1,p\}\{(\Omega )\}\} \]
holds for all $u\in W^\{1,p\}(\Omega ;\mathbb \{R\}^m)$ and $1<p<\infty $, where \[ (A(x)\nabla u(x))\_k=\sum \_\{i=1\}^m\sum \_\{j=1\}^n\, a\_k^\{ij\}(x)\,\frac\{\partial u\_i\}\{\partial x\_j\}(x) \quad (k=1,2,\ldots ,r; r\ge m) \]
defines an elliptic differential operator of first order with continuous coefficients on $\overline\{\Omega \}$. As a special case we obtain \[ \int \_\{\Omega \}\bigl |\nabla u(x)F(x)+(\nabla u(x)F(x))^T\bigr |^p\,dx\ge c\int \_\{\Omega \}|\nabla u(x)|^p\,dx\,, \qquad \{(*)\} \]
for all $u\in W^\{1,p\}(\Omega ;\mathbb \{R\}^n)$ vanishing on $\Gamma $, where $F:\overline\{\Omega \}\rightarrow M^\{n\times n\}(\mathbb \{R\})$ is a continuous mapping with $\operatorname\{det\} F(x)\ge \mu >0$. Next we show that $(*)$ is not valid if $n\ge 3$, $F\in L^\infty (\Omega )$ and $\operatorname\{det\} F(x)=1$, but does hold if $p=2$, $\Gamma =\partial \Omega $ and $F(x)$ is symmetric and positive definite in $\Omega $.},
author = {Pompe, Waldemar},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Korn's Inequality; coercive inequalities; generalized Korn inequality; continuous coefficients},
language = {eng},
number = {1},
pages = {57-70},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Korn's First Inequality with variable coefficients and its generalization},
url = {http://eudml.org/doc/249158},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Pompe, Waldemar
TI - Korn's First Inequality with variable coefficients and its generalization
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 1
SP - 57
EP - 70
AB - If $\Omega \subset \mathbb {R}^n$ is a bounded domain with Lipschitz boundary $\partial \Omega $ and $\Gamma $ is an open subset of $\partial \Omega $, we prove that the following inequality \[ \biggl (\int _\Omega |A(x)\nabla u(x)|^p\,dx\biggr )^{1/p} + \biggl (\int _\Gamma |u(x)|^p\,d\mathcal {H}^{n-1}(x)\biggr )^{1/p} \ge c\, \Vert u\Vert _{W^{1,p}{(\Omega )}} \]
holds for all $u\in W^{1,p}(\Omega ;\mathbb {R}^m)$ and $1<p<\infty $, where \[ (A(x)\nabla u(x))_k=\sum _{i=1}^m\sum _{j=1}^n\, a_k^{ij}(x)\,\frac{\partial u_i}{\partial x_j}(x) \quad (k=1,2,\ldots ,r; r\ge m) \]
defines an elliptic differential operator of first order with continuous coefficients on $\overline{\Omega }$. As a special case we obtain \[ \int _{\Omega }\bigl |\nabla u(x)F(x)+(\nabla u(x)F(x))^T\bigr |^p\,dx\ge c\int _{\Omega }|\nabla u(x)|^p\,dx\,, \qquad {(*)} \]
for all $u\in W^{1,p}(\Omega ;\mathbb {R}^n)$ vanishing on $\Gamma $, where $F:\overline{\Omega }\rightarrow M^{n\times n}(\mathbb {R})$ is a continuous mapping with $\operatorname{det} F(x)\ge \mu >0$. Next we show that $(*)$ is not valid if $n\ge 3$, $F\in L^\infty (\Omega )$ and $\operatorname{det} F(x)=1$, but does hold if $p=2$, $\Gamma =\partial \Omega $ and $F(x)$ is symmetric and positive definite in $\Omega $.
LA - eng
KW - Korn's Inequality; coercive inequalities; generalized Korn inequality; continuous coefficients
UR - http://eudml.org/doc/249158
ER -
References
top- Besov O.V., On coercivity in nonisotropic Sobolev spaces, Math. USSR-Sbornik, vol. 2 (1967), no. 4, 521-534. Zbl0169.47101
- Calderón A.P., Zygmund A., On singular integrals, Amer. J. Math. 78 (1956), 289-309. (1956) MR0084633
- Chen W., Jost J., A Riemann version of Korn's Inequality, Calc. Var. (2001). (2001)
- Ciarlet P.G., Mathematical Elasticity, Volume I: Three-dimensional Elasticity, North-Holland, 1988. Zbl0648.73014MR0936420
- Kałamajska A., Coercive inequalities on weighted Sobolev spaces, Coll. Math. LXVI (1994), 309-318. (1994) MR1268073
- Maz'ya V.G., Sobolev Spaces, Springer, 1985. Zbl1152.46002MR0817985
- Mikhlin S.G., Multidimensional singular integrals and integral equations, Pergamon Press, 1965. Zbl0129.07701MR0185399
- Nečas J., Sur les normes équivalentes dans et sur la coercivité des formes formellement positives, Séminaire de mathématiques supérieures, 1965. Fasc. 19: Équations aux dérivées partielles (1966), 101-128.
- Nečas J., Hlaváček I., Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction, Elsevier Scientific Publishing Company, 1981. MR0600655
- Neff P., On Korn's First Inequality with nonconstant coefficients, Proc. Roy. Soc. Edinburgh 132A (2002), 221-243. (2002) MR1884478
- Neff P., A Korn’s First Inequality with -coefficients, preprint.
- Neff P., Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation, preprint. Zbl1072.74013MR2126571
Citations in EuDML Documents
top- Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis, FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity
- Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis, FETI-DP domain decomposition methods for elasticity with structural changes: -elasticity
- Josip Tambača, Igor Velčić, Semicontinuity theorem in the micropolar elasticity
- Josip Tambača, Igor Velčić, Existence theorem for nonlinear micropolar elasticity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.