Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander's condition

R. Trujillo-González

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 1, page 137-152
  • ISSN: 0010-2628

Abstract

top
In this paper we establish weighted norm inequalities for singular integral operators with kernel satisfying a variant of the classical Hörmander's condition.

How to cite

top

Trujillo-González, R.. "Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander's condition." Commentationes Mathematicae Universitatis Carolinae 44.1 (2003): 137-152. <http://eudml.org/doc/249162>.

@article{Trujillo2003,
abstract = {In this paper we establish weighted norm inequalities for singular integral operators with kernel satisfying a variant of the classical Hörmander's condition.},
author = {Trujillo-González, R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {singular integral operators; maximal operators; $A_p$ weights; singular integral operators; maximal operators; weights},
language = {eng},
number = {1},
pages = {137-152},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander's condition},
url = {http://eudml.org/doc/249162},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Trujillo-González, R.
TI - Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander's condition
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 1
SP - 137
EP - 152
AB - In this paper we establish weighted norm inequalities for singular integral operators with kernel satisfying a variant of the classical Hörmander's condition.
LA - eng
KW - singular integral operators; maximal operators; $A_p$ weights; singular integral operators; maximal operators; weights
UR - http://eudml.org/doc/249162
ER -

References

top
  1. Bagby R.J., Kurtz D.S., Covering lemmas and the sharp function, Proc. Amer. Math. Soc. 93 (2) (1985), 291-296. (1985) Zbl0531.42006MR0770539
  2. Burkholder D.L., Gundy R.F., Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304. (1970) Zbl0223.60021MR0440695
  3. Calderón A., Zygmund A., On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. (1952) MR0052553
  4. Coifman R., Fefferman C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. (1974) Zbl0291.44007MR0358205
  5. García-Cuerva J., Rubio de Francia J.L., Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. MR0848147
  6. Grubb D.J., Moore C.N., A variant of Hörmander condition for singular integrals, Colloq. Math. 73 (2) (1997), 165-172. (1997) MR1446111
  7. Hörmander L., Estimates for translation invariant operators in spaces, Acta Math. 104 (1960), 93-140. (1960) MR0121655
  8. Journé J.L., Calderón-Zygmund Operators, Pseudo-Differential Operator, and the Cauchy Integral of Calderón, Lecture Notes in Math., Vol. 994, Springer-Verlag, New York, 1983. MR0706075
  9. Mason J.C., Near-Best approximation on circular and elliptical contours, J. Approx. Theory 24 (1978), 330-343. (1978) MR0523982
  10. Rubio de Francia J.L., Ruíz F., Torrea J.L., Calderón-Zygmund theory for operator-valued kernels, Adv. Math. 62 (1986), 7-48. (1986) MR0859252
  11. Torchinsky A., Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1987. Zbl1097.42002MR0869816
  12. Watson D.K., Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (2) (1990), 389-399. (1990) Zbl0711.42025MR1047758

NotesEmbed ?

top

You must be logged in to post comments.