Biharmonic Green domains in a Riemannian manifold

Sadoon Ibrahim Othman; Victor Anandam

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 2, page 359-365
  • ISSN: 0010-2628

Abstract

top
Let R be a Riemannian manifold without a biharmonic Green function defined on it and Ω a domain in R . A necessary and sufficient condition is given for the existence of a biharmonic Green function on Ω .

How to cite

top

Othman, Sadoon Ibrahim, and Anandam, Victor. "Biharmonic Green domains in a Riemannian manifold." Commentationes Mathematicae Universitatis Carolinae 44.2 (2003): 359-365. <http://eudml.org/doc/249168>.

@article{Othman2003,
abstract = {Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $.},
author = {Othman, Sadoon Ibrahim, Anandam, Victor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {biharmonic Green functions},
language = {eng},
number = {2},
pages = {359-365},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Biharmonic Green domains in a Riemannian manifold},
url = {http://eudml.org/doc/249168},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Othman, Sadoon Ibrahim
AU - Anandam, Victor
TI - Biharmonic Green domains in a Riemannian manifold
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 2
SP - 359
EP - 365
AB - Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $.
LA - eng
KW - biharmonic Green functions
UR - http://eudml.org/doc/249168
ER -

References

top
  1. Anandam V., Biharmonic Green functions in a Riemannian manifold, Arab J. Math. Sc. 4 (1998), 39-45. (1998) Zbl0942.31005MR1679626
  2. Anandam V., Damlakhi M., 10.14492/hokmj/1351001468, Hokkaido Math. J. 27 (1998), 669-680. (1998) MR1662962DOI10.14492/hokmj/1351001468
  3. Anandam V., Biharmonic classification of harmonic spaces, Rev. Roumaine Math. Pures Appl. 45 (2000), 383-395. (2000) Zbl0990.31003MR1840160
  4. Brelot M., Fonctions sousharmoniques associées à une mesure, Stud. Cerc. Şti. Mat. Iaşi 2 (1951), 114-118. (1951) Zbl0081.31601MR0041989
  5. Brelot M., Axiomatique des fonctions harmoniques, Les presses de l'Université de Montréal, 1966. Zbl0148.10401MR0247124
  6. Loeb P.A., 10.5802/aif.240, Ann. Inst. Fourier 16 (1966), 167-208. (1966) Zbl0172.15101MR0227455DOI10.5802/aif.240
  7. Othman S.I., Anandam V., 10.32917/hmj/1206126679, Hiroshima Math. J. 28 (1998), 501-506. (1998) Zbl0915.31008MR1657539DOI10.32917/hmj/1206126679
  8. Sario L., Nakai M., Wang C., Chung L.O., Classification theory of Riemannian manifolds, Lecture Notes in Math. 605, Springer-Verlag, 1977. Zbl0355.31001MR0508005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.