local regularity for the solutions of the -Laplacian on the Heisenberg group. The case
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 1, page 33-56
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMarchi, Silvana. "$C^{1,\alpha }$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}<p\le 2$." Commentationes Mathematicae Universitatis Carolinae 44.1 (2003): 33-56. <http://eudml.org/doc/249172>.
@article{Marchi2003,
abstract = {We prove the Hölder continuity of the homogeneous gradient of the weak solutions $u\in W_\{\operatorname\{loc\}\}^\{1,p\}$ of the p-Laplacian on the Heisenberg group $\mathcal \{H\}^n$, for $1+\frac\{1\}\{\sqrt\{5\}\} <p\le 2$.},
author = {Marchi, Silvana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {degenerate elliptic equations; weak solutions; regularity; higher differentiability; higher differentiability},
language = {eng},
number = {1},
pages = {33-56},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$C^\{1,\alpha \}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac\{1\}\{\sqrt\{5\}\}<p\le 2$},
url = {http://eudml.org/doc/249172},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Marchi, Silvana
TI - $C^{1,\alpha }$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}<p\le 2$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 1
SP - 33
EP - 56
AB - We prove the Hölder continuity of the homogeneous gradient of the weak solutions $u\in W_{\operatorname{loc}}^{1,p}$ of the p-Laplacian on the Heisenberg group $\mathcal {H}^n$, for $1+\frac{1}{\sqrt{5}} <p\le 2$.
LA - eng
KW - degenerate elliptic equations; weak solutions; regularity; higher differentiability; higher differentiability
UR - http://eudml.org/doc/249172
ER -
References
top- Capogna L., Regularity of quasilinear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), 867-889. (1997) MR1459590
- Capogna L., Regularity for quasilinear equations and -quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), 263-295. (1999) Zbl0927.35024MR1679786
- Capogna L., Danielli D., Garofalo N., An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (9-10) (1993), 1765-1794. (1993) Zbl0802.35024MR1239930
- Cutrí A., Garroni M.G., Existence, uniqueness and regularity results for integro-differential Heisenberg equations, Adv. in Differential Equations 1 (1996), 920-939. (1996) MR1409894
- Di Benedetto E., local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 8 (1983), 827-850. (1983) MR0709038
- Evans C.L., A new proof of local regularity for solutions of certain degenerate elliptic P.D.E., J. Differential Equations 45 (1982), 356-373. (1982) MR0672713
- Folland G.B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. (1975) Zbl0312.35026MR0494315
- Folland G.B., Stein E.M., Estimates for the complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 459-522. (1974) MR0367477
- Giusti E., Direct methods in the calculus of variations (in Italian), Unione Matematica Italiana, Bologna (1994). MR1707291
- Hörmander L., Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. (1967) MR0222474
- Jerison D., The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. (1986) Zbl0614.35066MR0850547
- Ladyzenskaja O.A., Ural'tzeva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. MR0244627
- Lewis J., Capacitary functions in convex rings, Arch. Rational Mech. Anal. 66 (1977), 201-224. (1977) Zbl0393.46028MR0477094
- Lewis J., Regularity of the derivatives of solutions of certain degenerate elliptic equations, Indiana Univ. Math. J. 32 6 (1983), 849-858. (1983) MR0721568
- Lu G., Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 3 (1992), 367-439. (1992) Zbl0804.35015MR1202416
- Maz'ja V.G., Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985. Zbl0692.46023
- Marchi S., Hölder continuity and Harnack inequality for De Giorgi classes related to Hörmander vector fields, Ann. Mat. Pura Appl. (IV) CLXVIII (1995), 171-188. (1995) Zbl0861.35018MR1378243
- Marchi S., local regularity for the solutions of the p-Laplacian on the Heisenberg group. The case , Z. Anal. Anwendungen 20 (2001), 3 617-636. (2001) Zbl0988.35066MR1863937
- Marchi S., regularity of the derivatives in the second commutator’s direction for nonlinear elliptic equations on the Heisenberg group, in print on Accademia dei XL. Zbl0102.20501
- Moser J., On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. XIV (1991), 577-591. (1991) MR0159138
- Nagel A., Stein E.M., Wainger S., Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103-147. (1985) Zbl0578.32044MR0793239
- Serrin J., Local behaviour of solutions of quasi-linear elliptic equations, Acta Math. 111 (1964), 247-302. (1964) MR0170096
- Stein E.M., Singular Integrals and Differentiability Properties, Princeton Univ. Press, Princeton, 1970. Zbl0281.44003MR0290095
- Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam-New York-Oxford, 1978. Zbl0830.46028MR0503903
- Triebel H., Theory of Function Spaces, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983. Zbl1104.46001MR0781540
- Tolksdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. (1984) MR0727034
- Uhlenbeck K., Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219-240. (1977) Zbl0372.35030MR0474389
- Ural'tzeva N.N., Degenerate quasilinear elliptic systems, Zap. Nauchno Sem. Leningrad Otdel. Mat. Steklov 7 (1968), 184-222. (1968) MR0244628
- Xu C.J., Regularity for quasilinear second-order subelliptic equations, Comm. Pure Appl. Math. XLV (1992), 77-96. (1992) Zbl0827.35023MR1135924
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.