Completeness properties of function rings in pointfree topology
Bernhard Banaschewski; Sung Sa Hong
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 2, page 245-259
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topBanaschewski, Bernhard, and Hong, Sung Sa. "Completeness properties of function rings in pointfree topology." Commentationes Mathematicae Universitatis Carolinae 44.2 (2003): 245-259. <http://eudml.org/doc/249183>.
@article{Banaschewski2003,
	abstract = {This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or $\sigma $-complete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.},
	author = {Banaschewski, Bernhard, Hong, Sung Sa},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {frame of reals; lattice ordered rings of real valued continuous functions and integer valued continuous functions; extremally disconnected frame; basically disconnected frame; cozero map; frames; function rings},
	language = {eng},
	number = {2},
	pages = {245-259},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Completeness properties of function rings in pointfree topology},
	url = {http://eudml.org/doc/249183},
	volume = {44},
	year = {2003},
}
TY  - JOUR
AU  - Banaschewski, Bernhard
AU  - Hong, Sung Sa
TI  - Completeness properties of function rings in pointfree topology
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 44
IS  - 2
SP  - 245
EP  - 259
AB  - This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or $\sigma $-complete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.
LA  - eng
KW  - frame of reals; lattice ordered rings of real valued continuous functions and integer valued continuous functions; extremally disconnected frame; basically disconnected frame; cozero map; frames; function rings
UR  - http://eudml.org/doc/249183
ER  - 
References
top- Ball R.N., Walters-Wayland J.L., - and -embedded sublocales, Dissertationes Math. 412 (2002). (2002) Zbl1012.54025MR1952051
 - Banaschewski B., Universal zero-dimensional compactifications, In Categorical Topology and its Relation to Analysis, Algebra, and Combinatorics, Prague, Czechoslovakia, August 1988, World Scientific, Singapore, 1989, pp. 257-269. MR1047906
 - Banaschewski B., The frame envelope of a -frame, Quaest. Math. 16 (1993), 51-60. (1993) Zbl0779.06009MR1217474
 - Banaschewski B., The real numbers in pointfree topology, Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 1997. Zbl0891.54009MR1621835
 - Banaschewski B., Mulvey C.J., 10.1016/0022-4049(84)90001-X, J. Pure Appl. Algebra 33 (1984), 107-122. (1984) Zbl0549.54017MR0754950DOI10.1016/0022-4049(84)90001-X
 - Gillman L., Jerison M., Rings of continuous functions, D. Van Nostrand, 1960. Zbl0327.46040MR0116199
 - Johnstone P.T., Conditions related to De Morgan's law, In Applications of Sheaves, Proceedings, Durham, 1977, Springer LNM 753 (1979), pp. 479-491. Zbl0445.03041MR0555556
 - Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982, . MR0698074
 - Nakano H., Über das System aller stetigen Funktionen auf einen topologischen Raum, Proc. Imp. Acad. Tokyo 17 (1941), 308-310. (1941) MR0014173
 - Stone M.H., 10.4153/CJM-1949-016-5, Canad. J. Math. 1 (1949), 176-186. (1949) Zbl0032.16901MR0029091DOI10.4153/CJM-1949-016-5
 - Vickers S., Topology via Logic, Cambridge Tracts in Theor. Comp. Sci. No 5, Cambridge University Press, 1985. Zbl0922.54002MR1002193
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.