Convolution operators on the dual of hypergroup algebras
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 4, page 669-679
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGhaffari, Ali. "Convolution operators on the dual of hypergroup algebras." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 669-679. <http://eudml.org/doc/249195>.
@article{Ghaffari2003,
abstract = {Let $X$ be a hypergroup. In this paper, we define a locally convex topology $\beta $ on $L(X)$ such that $(L(X),\beta )^*$ with the strong topology can be identified with a Banach subspace of $L(X)^*$. We prove that if $X$ has a Haar measure, then the dual to this subspace is $L_C(X)^\{**\}= \operatorname\{cl\}\lbrace F\in L(X)^\{**\}; F$ has compact carrier\}. Moreover, we study the operators on $L(X)^*$ and $L_0^\infty (X)$ which commute with translations and convolutions. We prove, among other things, that if $\operatorname\{wap\}(L(X))$ is left stationary, then there is a weakly compact operator $T$ on $L(X)^*$ which commutes with convolutions if and only if $L(X)^\{**\}$ has a topologically left invariant functional. For the most part, $X$ is a hypergroup not necessarily with an involution and Haar measure except when explicitly stated.},
author = {Ghaffari, Ali},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Arens regular; hypergroup algebra; weakly almost periodic; convolution operators; Arens regular; hypergroup algebra; weakly almost periodic; convolution operators},
language = {eng},
number = {4},
pages = {669-679},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convolution operators on the dual of hypergroup algebras},
url = {http://eudml.org/doc/249195},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Ghaffari, Ali
TI - Convolution operators on the dual of hypergroup algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 669
EP - 679
AB - Let $X$ be a hypergroup. In this paper, we define a locally convex topology $\beta $ on $L(X)$ such that $(L(X),\beta )^*$ with the strong topology can be identified with a Banach subspace of $L(X)^*$. We prove that if $X$ has a Haar measure, then the dual to this subspace is $L_C(X)^{**}= \operatorname{cl}\lbrace F\in L(X)^{**}; F$ has compact carrier}. Moreover, we study the operators on $L(X)^*$ and $L_0^\infty (X)$ which commute with translations and convolutions. We prove, among other things, that if $\operatorname{wap}(L(X))$ is left stationary, then there is a weakly compact operator $T$ on $L(X)^*$ which commutes with convolutions if and only if $L(X)^{**}$ has a topologically left invariant functional. For the most part, $X$ is a hypergroup not necessarily with an involution and Haar measure except when explicitly stated.
LA - eng
KW - Arens regular; hypergroup algebra; weakly almost periodic; convolution operators; Arens regular; hypergroup algebra; weakly almost periodic; convolution operators
UR - http://eudml.org/doc/249195
ER -
References
top- Bloom W.R., Heyer H., Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter, Berlin, 1995. Zbl0828.43005MR1312826
- Bloom W.R., Walter M.E., Isomorphism of hypergroups, J. Austral. Math. Soc. 52 (1992), 383-400. (1992) MR1151294
- Duncan J., Hosseiniun S.A.R., The second dual of Banach algebra, Proc. Royal Soc. Edinburgh 84 (1979), 309-325. (1979) MR0559675
- Dunkl C.F., The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331-348. (1973) Zbl0241.43003MR0320635
- Ghahramani F., Medghalchi A.R., Compact multipliers on hypergroup algebras, Math. Proc. Cambridge Philos. Soc. 98 (1985), 493-500. (1985) MR0803608
- Ghahramani F., Medghalchi A.R., Compact multiplier on hypergroup algebras II, Math. Proc. Cambridge Philos. Soc. 100 (1986), 145-149. (1986) MR0838661
- Granirer E.E., Criteria for compactness and for discreteness of locally compact amenable groups, Proc. Amer. Math. Soc. 40 (1973), 615-624. (1973) Zbl0274.22009MR0340962
- Jewett R.I., Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1-101. (1975) Zbl0325.42017MR0394034
- Larsen R., An Introduction to the Theory of Multipliers, Springer Verlag, Berlin, Heidelberg, New York, 1960. Zbl0213.13301MR0435738
- Lasser R., Almost periodic functions on hypergroups, Math. Ann. 252 (1980), 183-196. (1980) Zbl0431.43007MR0593632
- Lau A.T., Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups, Fund. Math. 118 (1983), 161-175. (1983) Zbl0545.46051MR0736276
- Lau A.T., Pym J.S., Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. 41 (1990), 445-460. (1990) Zbl0667.43004MR1072051
- Lau A.T., Ulger A., Topological centers of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212. (1996) MR1322952
- Medghalchi A.R., The second dual of a hypergroup, Math. Z. 210 (1992), 615-624. (1992) MR1175726
- Medghalchi A.R., Modarres S.M.S., Amenability of the second dual of hypergroup algebras, Acta. Math. Hungar. 86 (2000), 335-342. (2000) Zbl0970.46030MR1756256
- Rudin W., Functional Analysis, McGraw Hill, New York, 1991. Zbl0867.46001MR1157815
- Skantharajah M., Amenable hypergroups, Ph.D. Thesis, The University of Alberta, 1989. Zbl0755.43003
- Skantharajah M., Amenable hypergroups, Illinois J. Math. 36 (1992), 15-46. (1992) Zbl0755.43003MR1133768
- Spector R., Apercu de la theorie des hypergroups in analyse harmonique sur les groups de Lie, Lecture Notes in Math. 497, Springer Verlag, New York, 1975. MR0447974
- Wolfenstetter S., Weakly almost periodic functions on hypergroups, Monatsh. Math. 96 (1983), 67-79. (1983) Zbl0532.43005MR0721597
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.